Optimality conditions for bilevel programming problems

Focus in the paper is on optimality conditions for bilevel programming problems. We start with a general condition using tangent cones of the feasible set of the bilevel programming problem to derive such conditions for the optimistic bilevel problem. More precise conditions are obtained if the tangent cone possesses an explicit description as it is possible in the case of linear lower level problems. If the optimal solution of the lower level problem is a PC 1-function, sufficient conditions for a global optimal solution of the optimistic bilevel problem can be formulated. In the second part of the paper relations of the bilevel programming problem to set-valued optimization problems and to mathematical programs with equilibrium constraints are given which can also be used to formulate optimality conditions for the original problem. Finally, a variational inequality approach is described which works well when the involved functions are monotone. It consists in a variational re-formulation of the optimality conditions and looking for a solution of the thus obtained variational inequality among the points satisfying the initial constraints. A penalty function technique is applied to get a sequence of approximate solutions converging to a solution of the original problem with monotone operators.

[1]  N. Gadhi,et al.  Necessary Optimality Conditions for Bilevel Optimization Problems Using Convexificators , 2006, J. Glob. Optim..

[2]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[3]  Christian Kanzow,et al.  A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints , 2006 .

[4]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[5]  M. Smith,et al.  A descent algorithm for solving monotone variational inequalities and monotone complementarity problems , 1984 .

[6]  D. Ward,et al.  Directional Derivative Calculus and Optimality Conditions in Nonsmooth Mathematical Programming , 1989 .

[7]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[8]  Johannes Jahn,et al.  Optimality conditions for set-valued optimization problems , 1998, Math. Methods Oper. Res..

[9]  Dempe,et al.  Generalized PC 1-functions , 2007 .

[10]  Stephan Dempe,et al.  On the directional derivative of the optimal solution mapping without linear independence constraint qualification , 1989 .

[11]  Christian Kanzow,et al.  Abadie-Type Constraint Qualification for Mathematical Programs with Equilibrium Constraints , 2005 .

[12]  Jacqueline Morgan,et al.  Weak via strong Stackelberg problem: New results , 1996, J. Glob. Optim..

[13]  M. Kojima Strongly Stable Stationary Solutions in Nonlinear Programs. , 1980 .

[14]  Stephan Dempe,et al.  Directional derivatives of the solution of a parametric nonlinear program , 1995, Math. Program..

[15]  D. Fanghänel Optimality criteria for bilevel programming problems using the radial subdifferential , 2006 .

[16]  Stephan Dempe,et al.  Directional differentiability of optimal solutions under Slater's condition , 1993, Math. Program..

[17]  D. Klatte Nonsmooth equations in optimization , 2002 .

[18]  B. Mordukhovich Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .

[19]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[20]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[21]  Jirí V. Outrata,et al.  A Generalized Mathematical Program with Equilibrium Constraints , 2000, SIAM J. Control. Optim..

[22]  Stephan Dempe,et al.  On an algorithm solving two-level programming problems with nonunique lower level solutions , 1996, Comput. Optim. Appl..

[23]  J. Mirrlees The Theory of Moral Hazard and Unobservable Behaviour: Part I , 1999 .

[24]  Jonathan F. Bard,et al.  Practical Bilevel Optimization , 1998 .

[25]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..

[26]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[27]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[28]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[29]  Ruoxin Zhang,et al.  Problems of Hierarchical Optimization in Finite Dimensions , 1994, SIAM J. Optim..

[30]  B. Mordukhovich,et al.  Coderivatives in parametric optimization , 2004, Math. Program..

[31]  C. Kanzow,et al.  A Fritz John Approach to First Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints , 2003 .

[32]  S. Dempe A necessary and a sufficient optimality condition for bilevel programming problems , 1992 .

[33]  S Scholtes,et al.  Mathematical programs with equilibrium constraints: stationarity, optimality, and sensitivity , 1997 .

[34]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[35]  Stephan Dempe Corrigendum: “on the directional derivative of the optimal solution mapping without linear independence constraint qualification” of S. Dempe (optimization 20 (1989) 4 401–414) , 1991 .

[36]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[37]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[38]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[39]  Vyacheslav V. Kalashnikov,et al.  Solving two-Level variational inequality , 1996, J. Glob. Optim..

[40]  Stephan Dempe,et al.  Inverse Linear Programming , 2006 .

[41]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[42]  Stephan Dempe,et al.  Bilevel programming with convex lower level problems , 2006 .

[43]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[44]  P. Harker,et al.  A penalty function approach for mathematical programs with variational inequality constraints , 1991 .

[45]  J. Penot,et al.  A new constraint qualification condition , 1986 .

[46]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[47]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[48]  Adam B. Levy,et al.  Sensitivity of Solutions in Nonlinear Programming Problems with Nonunique Multipliers , 1995 .

[49]  Jane J. Ye,et al.  Nondifferentiable Multiplier Rules for Optimization and Bilevel Optimization Problems , 2004, SIAM J. Optim..

[50]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[51]  M. Studniarski Necessary and sufficient conditions for isolated local minima of nonsmooth functions , 1986 .

[52]  S. Karamardian An existence theorem for the complementarity problem , 1976 .

[53]  A. Shapiro Sensitivity analysis of nonlinear programs and differentiability properties of metric projections , 1988 .

[54]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[55]  R. Lucchetti,et al.  Existence theorems of equilibrium points in stackelberg , 1987 .

[56]  H. Tuy Convex analysis and global optimization , 1998 .

[57]  J. Pang,et al.  Existence of optimal solutions to mathematical programs with equilibrium constraints , 1988 .

[58]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[59]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[60]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[61]  R. Tyrrell Rockafellar,et al.  Ample Parameterization of Variational Inclusions , 2001, SIAM J. Optim..

[62]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .