Simultaneous identification of the spatio-temporal dependent heat transfer coefficient and spatially dependent heat flux using an MCGM in a parabolic system

Abstract This paper aims to simultaneously identify the spatio-temporal dependent heat transfer coefficient γ ( x , t ) and the spatially dependent heat flux q ( x ) in a parabolic system. The simultaneous identification problem is formulated as a constrained minimization problem using the output least squares method with Tikhonov regularization. The differentiability of the solution and adjoint equations are investigated to obtain the gradient formulae and determine the step lengths, respectively. To illustrate the efficiency, accuracy, and robustness of the proposed algorithm, numerical results are investigated using the modified conjugate gradient method (MCGM).

[1]  Bangti Jin,et al.  Numerical estimation of the Robin coefficient in a stationary diffusion equation , 2010 .

[2]  Nicolas Legrand,et al.  Temperature and heat flux fast estimation during rolling process , 2014 .

[3]  Lukas Aichmayer,et al.  Solar Receiver Design and Verification for Small Scale Polygeneration Unit , 2011 .

[4]  J. Beck,et al.  Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients , 1989 .

[5]  M. Slodička,et al.  Determination of a time-dependent heat transfer coefficient in a nonlinear inverse heat conduction problem , 2010 .

[6]  Daijun Jiang,et al.  Simultaneous identification of Robin coefficient and heat flux in an elliptic system , 2017, Int. J. Comput. Math..

[7]  Hirotaka Igawa,et al.  Inverse analysis for transient thermal load identification and application to aerodynamic heating on atmospheric reentry capsule , 2014 .

[8]  Robin P. Mooney,et al.  An experimental-numerical method for estimating heat transfer in a Bridgman furnace , 2014 .

[9]  Jun Zou,et al.  A numerical method for reconstructing the coefficient in a wave equation , 2015 .

[10]  Karl Kunisch,et al.  The Parameter Estimation Problem for Parabolic Equations and Discontinuous Observation Operators , 1985 .

[11]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[12]  Bangti Jin,et al.  Numerical identification of a Robin coefficient in parabolic problems , 2012, Math. Comput..

[13]  Bangti Jin,et al.  Conjugate gradient method for the Robin inverse problem associated with the Laplace equation , 2007 .

[14]  On some robust algorithms for the Robin inverse problem , 2008 .

[15]  J. K. Chen,et al.  Inverse estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object , 2010 .

[16]  Kai Yang,et al.  A modified Levenberg–Marquardt algorithm for simultaneous estimation of multi-parameters of boundary heat flux by solving transient nonlinear inverse heat conduction problems , 2016 .

[17]  Jun Zou,et al.  Numerical Reconstruction of Heat Fluxes , 2005, SIAM J. Numer. Anal..

[18]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[19]  Jann-Long Chern,et al.  Minimizers of Caffarelli–Kohn–Nirenberg Inequalities with the Singularity on the Boundary , 2010 .

[20]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..