Optical wavefront measurement and/or modification using integrated optics

Sensors consisting of an array of interferometers to measure phase differences and straight waveguides to measure intensity along an optical wavefront have been fabricated in LiNbO/sub 3/ at four wavelengths, lambda =0.458, 0.514, 0.82, and 3.39 mu m, and the performance of the sensors has been evaluated. The outputs of the arrays are coupled to an imaging CCD and fed into a computer. Calculations are presented for a conceptual design of a scanning one-dimensional array producing a 50*50 pixel snapshot. Experimental results are presented for 20-resolution-element one-dimensional interferometer arrays at 0.514, 0.82, and 3.39 mu m. The results indicate that accurate modification of wavefronts as well as measurements of wavefronts are possible. Two structures for modification of optical wavefronts are proposed. >

[1]  R. A. Becker Methods Of Characterizing Photorefractive Susceptibility Of LiNbO3 Waveguides , 1985, Other Conferences.

[2]  R. Alferness Guided-wave devices for optical communication , 1981 .

[3]  Steven R. Lange Self-Referencing Wavefront Interferometer For Laser Sources , 1986, Other Conferences.

[4]  Noah Bareket Three-Channel Phase Detector For Pulsed Wavefront Sensing , 1986, Other Conferences.

[5]  J. Hardy,et al.  Real-time atmospheric compensation , 1977 .

[6]  Barry E. Burke,et al.  420 X420 Charge-Coupled-Device Imager And Four-Chip Hybrid Focal Plane , 1987 .

[7]  William K. Burns,et al.  Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides , 1979 .

[8]  William K. Burns,et al.  Optical waveguide parabolic coupling horns , 1977 .

[9]  P. Tien Integrated optics and new wave phenomena in optical waveguides , 1977 .

[10]  P. W. Smith On the role of photonic switching in future communications systems , 1987, IEEE Circuits and Devices Magazine.

[11]  G.M. Borsuk Photodetectors for acousto-optic signal processors , 1981, Proceedings of the IEEE.

[12]  R. C. Williamson,et al.  Wide-band electrooptic guided-wave analog-to-digital converters , 1984, Proceedings of the IEEE.

[13]  W. Kosonocky,et al.  160 × 244 Element PtSi Schottky-barrier IR-CCD image sensor , 1985, IEEE Transactions on Electron Devices.

[14]  A. Yariv,et al.  Guided wave optics , 1974 .

[15]  D. Robinson,et al.  A method for improving the spatial resolution of frontside-illuminated CCD's , 1981, IEEE Transactions on Electron Devices.

[16]  J. G. Allen,et al.  Digital Wavefront Sensor For Astronomical Image Compensation , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[17]  M. King,et al.  A deep-depletion CCD imager for soft X-ray, visible, and near-infrared sensing , 1985, IEEE Transactions on Electron Devices.

[18]  R. Alferness Waveguide Electrooptic Modulators , 1982 .

[19]  T. A. Lind,et al.  Integrated Optics Wavefront Measurement Sensor , 1986, Other Conferences.

[20]  R. Rediker,et al.  Analysis of integrated-optics near 3 dB coupler and Mach-Zehnder interferometric modulator using four-port scattering matrix , 1982 .

[21]  Stewart E. Miller,et al.  Integrated optics: An introduction , 1969 .

[22]  W. F. Kosonocky,et al.  Schottky IRCCD Thermal Imaging , 1980 .

[23]  Wavefront measurements on semiconductor lasers , 1983 .

[24]  R. Rediker,et al.  Integrated optics wave front measurement sensor , 1983 .

[25]  J. W. Hardy,et al.  Active optics: A new technology for the control of light , 1978, Proceedings of the IEEE.

[26]  R. Alferness,et al.  Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO 3 strip waveguides , 1982 .

[27]  H. Kogelnik,et al.  An Introduction to Integrated Optics , 1975 .

[28]  W. Burns,et al.  Mode coupling in optical waveguide horns , 1977 .

[29]  J. Hayes,et al.  A Heterodyne Interferometer For Testing Laser Diodes , 1983 .

[30]  Steven Krausman,et al.  Laboratory Wavefront Sensor For Speckle Image Enhancement , 1988, Photonics West - Lasers and Applications in Science and Engineering.