More than colour attraction: behavioural functions of flower patterns

[1]  Jonathan P. Dyhr,et al.  Luminance-dependent visual processing enables moth flight in low light , 2015, Science.

[2]  K. Lunau,et al.  Trees as huge flowers and flowers as oversized floral guides: the role of floral color change and retention of old flowers in Tibouchina pulchra , 2015, Front. Plant Sci..

[3]  Marie Dacke,et al.  Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees , 2015, The Journal of Experimental Biology.

[4]  T. Daniel,et al.  Shape matters: corolla curvature improves nectar discovery in the hawkmoth Manduca sexta. , 2015, Functional ecology.

[5]  Michael H Dickinson,et al.  Hovering Flight in the Honeybee Apis mellifera: Kinematic Mechanisms for Varying Aerodynamic Forces , 2014, Physiological and Biochemical Zoology.

[6]  Tia-Lynn Ashman,et al.  Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild , 2014 .

[7]  Andrew Philippides,et al.  Head movements and the optic flow generated during the learning flights of bumblebees , 2014, Journal of Experimental Biology.

[8]  R. Menzel,et al.  Mechanisms, functions and ecology of colour vision in the honeybee , 2014, Journal of Comparative Physiology A.

[9]  K. Arikawa,et al.  Color and polarization vision in foraging Papilio , 2014, Journal of Comparative Physiology A.

[10]  Norbert Boeddeker,et al.  A universal strategy for visually guided landing , 2013, Proceedings of the National Academy of Sciences.

[11]  S. Johnson,et al.  Pollinator-mediated evolution of floral signals. , 2013, Trends in ecology & evolution.

[12]  Daniel Robert,et al.  Detection and Learning of Floral Electric Fields by Bumblebees , 2013, Science.

[13]  W. Federle,et al.  Biomechanics of plant-insect interactions. , 2013, Current opinion in plant biology.

[14]  Martin Egelhaaf,et al.  Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action , 2012, Front. Neural Circuits.

[15]  A. Jürgens,et al.  The evolution of floral mimicry: identifying traits that visually attract pollinators , 2012 .

[16]  P. Graham,et al.  What can we learn from studies of insect navigation? , 2012, Animal Behaviour.

[17]  Anna Balkenius,et al.  Discrimination Training with Multimodal Stimuli Changes Activity in the Mushroom Body of the Hawkmoth Manduca sexta , 2012, PloS one.

[18]  S. Johnson,et al.  Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness , 2012, Proceedings of the Royal Society B: Biological Sciences.

[19]  Allen Cheung,et al.  Honeybee flight: a novel ‘streamlining’ response , 2011, Journal of Experimental Biology.

[20]  Douglas Blackiston,et al.  Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae) , 2011, Journal of Experimental Biology.

[21]  Martin Egelhaaf,et al.  The fine structure of honeybee head and body yaw movements in a homing task , 2010, Proceedings of the Royal Society B: Biological Sciences.

[22]  Matthew Collett,et al.  How desert ants use a visual landmark for guidance along a habitual route , 2010, Proceedings of the National Academy of Sciences.

[23]  L. Chittka,et al.  Bees use three-dimensional information to improve target detection , 2010, Naturwissenschaften.

[24]  K. Lunau,et al.  Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera , 2009, Journal of Comparative Physiology A.

[25]  E. Warrant,et al.  Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata , 2009, Journal of Experimental Biology.

[26]  Y. Takami,et al.  Flower orientation enhances pollen transfer in bilaterally symmetrical flowers , 2009, Oecologia.

[27]  M. Vorobyev,et al.  Flower patterns are adapted for detection by bees , 2009, Journal of Comparative Physiology A.

[28]  Almut Kelber,et al.  Nocturnal bees learn landmark colours in starlight , 2008, Current Biology.

[29]  P. Hill,et al.  Learning and Memory During Foraging of The Blue Orchard Bee, Osmia lignaria Say (Hymenoptera: Megachilidae) , 2008 .

[30]  M. Vorobyev,et al.  Detection of patches of coloured discs by bees , 2008, Journal of Experimental Biology.

[31]  J. Fellous,et al.  The Processing of Color, Motion, and Stimulus Timing Are Anatomically Segregated in the Bumblebee Brain , 2008, The Journal of Neuroscience.

[32]  M. Vorobyev,et al.  Tetrachromacy in a butterfly that has eight varieties of spectral receptors , 2008, Proceedings of the Royal Society B: Biological Sciences.

[33]  Adrian G Dyer,et al.  Honeybees can recognise images of complex natural scenes for use as potential landmarks , 2008, Journal of Experimental Biology.

[34]  J. Goyret,et al.  Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth , 2008, Naturwissenschaften.

[35]  W. Wcislo,et al.  Flight performance in night-flying sweat bees suffers at low light levels , 2007, Journal of Experimental Biology.

[36]  D. Stavenga,et al.  Spectral Organization of Ommatidia in Flower‐visiting Insects † , 2007, Photochemistry and photobiology.

[37]  A. Ushimaru,et al.  Flowers adaptively face down‐slope in 10 forest‐floor herbs , 2006 .

[38]  K. Arikawa,et al.  Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus , 2006, Journal of Experimental Biology.

[39]  J. Goyret,et al.  The role of mechanosensory input in flower handling efficiency and learning by Manduca sexta , 2006, Journal of Experimental Biology.

[40]  Alison M. Sweeney,et al.  Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor , 2006, Journal of Experimental Biology.

[41]  Martin Giurfa,et al.  The influence of training length on generalization of visual feature assemblies in honeybees , 2005, Behavioural Brain Research.

[42]  F. Hyodo,et al.  Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour , 2005 .

[43]  Eric J. Warrant,et al.  Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis , 2004, Cell and Tissue Research.

[44]  Mandyam V. Srinivasan,et al.  Grouping of visual objects by honeybees , 2004, Journal of Experimental Biology.

[45]  R. Menzel,et al.  Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts , 1996, Journal of Comparative Physiology A.

[46]  B. Heinrich,et al.  The foraging movements of bumblebees on vertical “inflorescences”: An experimental analysis , 1979, Journal of comparative physiology.

[47]  Karl Daumer,et al.  Blumenfarben, wie sie die Bienen sehen , 1958, Zeitschrift für vergleichende Physiologie.

[48]  G. Pyke,et al.  Optimal foraging in bumblebees and coevolution with their plants , 2004, Oecologia.

[49]  T. S. Collett,et al.  Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.

[50]  Colour-dependent target detection by bees , 2003, Journal of Comparative Physiology A.

[51]  M. Vorobyev,et al.  Animal colour vision — behavioural tests and physiological concepts , 2003, Biological reviews of the Cambridge Philosophical Society.

[52]  A. Kelber Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  M. Vorobyev,et al.  Discrimination of coloured patterns by honeybees through chromatic and achromatic cues , 2002, Journal of Comparative Physiology A.

[54]  Thomas S. Collett,et al.  Memory use in insect visual navigation , 2002, Nature Reviews Neuroscience.

[55]  G. Ne’eman,et al.  The effect of shape parameters on maximal detection distance of model targets by honeybee workers , 2001, Journal of Comparative Physiology A.

[56]  Martin Giurfa,et al.  Detection of coloured patterns by honeybees through chromatic and achromatic cues , 2001, Journal of Comparative Physiology A.

[57]  A. Gumbert,et al.  Colour similarity to rewarding model plants affects pollination in a food deceptive orchid, Orchis boryi , 2001 .

[58]  Randolf Menzel,et al.  Colour thresholds and receptor noise: behaviour and physiology compared , 2001, Vision Research.

[59]  N. Strausfeld,et al.  Organization and significance of neurons that detect change of visual depth in the hawk moth Manduca sexta , 2000, The Journal of comparative neurology.

[60]  S. Laughlin,et al.  Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system , 2000, Vision Research.

[61]  M. Giurfa,et al.  The angular range of achromatic target detection by honey bees , 1998, Journal of Comparative Physiology A.

[62]  Randolf Menzel,et al.  FLOWERS THROUGH INSECT EYES , 1997 .

[63]  M. Lehrer,et al.  HONEYBEE'S USE OF SPATIAL PARAMETERS FOR FLOWER DISCRIMINATION , 1997 .

[64]  M. Lehrer,et al.  SPATIAL FLOWER PARAMETERS AND INSECT SPATIAL VISION , 1997 .

[65]  Randolf Menzel,et al.  Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals , 1997, Journal of Comparative Physiology A.

[66]  A. Dafni,et al.  Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance , 1996 .

[67]  M. Lehrer,et al.  Small-scale navigation in the honeybee: active acquisition of visual information about the goal , 1996, The Journal of experimental biology.

[68]  B. Heinrich The Energetics of Pollination , 1981 .

[69]  Kuno Kirschfeld,et al.  The Resolution of Lens and Compound Eyes , 1976 .