Is There A Minimum Size and a Maximum Speed for a Nanoscale Amplifier?

ABSTRACT: The C60 electromechanical amplifier is a working 3‐terminal device based on the modulation of the tunnel‐transport regime through a C60 molecule by a reversible deformation of its cage. We present the advantages of the planarization of this triode such as a surface extension lower than 0.05μm2 on the wafer and a large gain (Gd > 40). High‐speed operation (bandwidth greater than 1 GHz) and low energy dissipation in the attojoules range are discussed together with the technological difficulties to fabricate such a planar molecular triode.

[1]  Christian Joachim,et al.  Drawing a single nanofibre over hundreds of microns , 1998 .

[2]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[3]  A. Pisano,et al.  Modeling and optimal design of piezoelectric cantilever microactuators , 1997 .

[4]  Alexey Bezryadin,et al.  Electrostatic trapping of single conducting nanoparticles between nanoelectrodes , 1997 .

[5]  Joseph A. Turner,et al.  Analysis of the high-frequency response of atomic force microscope cantilevers , 1997 .

[6]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[7]  Peter Vettiger,et al.  Silicon micro/nanomechanical device fabrication based on focused ion beam surface modification and KOH etching , 1997 .

[8]  E. Fabrizio,et al.  Fabrication of 5 nm Resolution Electrodes for Molecular Devices by Means of Electron Beam Lithography , 1997 .

[9]  Chengkuo Lee,et al.  Deflection detection and feedback actuation using a self‐excited piezoelectric Pb(Zr,Ti)O3 microcantilever for dynamic scanning force microscopy , 1996 .

[10]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[11]  Abdullah Atalar,et al.  High‐speed atomic force microscopy using an integrated actuator and optical lever detection , 1996 .

[12]  J. Gorman,et al.  On The Low-Frequency Vibrational Modes of C$_{60}$ , 1996, mtrl-th/9604002.

[13]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[14]  J. Gorman,et al.  ON THE VIBRATIONAL MODES OF C60 , 1996 .

[15]  J. Vinuesa,et al.  Length dependence of the electronic transparence (conductance) of a molecular wire , 1996 .

[16]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[17]  B. Rousset,et al.  Fabrication of Buried Co-Planar Metal-Insulator-Metal Nanojunctions with a Gap Lower than 10 nm , 1995 .

[18]  M. Reed,et al.  Microfabrication of a Mechanically Controllable Break Junction in Silicon , 1995 .

[19]  J. Gimzewski,et al.  ANALYSIS OF LOW-VOLTAGE I(V) CHARACTERISTICS OF A SINGLE C60 MOLECULE , 1995 .

[20]  Joachim,et al.  Electronic transparence of a single C60 molecule. , 1995, Physical review letters.

[21]  W. H. Mallison,et al.  High-speed single-flux-quantum circuit using planarized niobium-trilayer Josephson junction technology , 1995 .

[22]  Dürig,et al.  Electronic and mechanical characterization of self-assembled alkanethiol monolayers by scanning tunneling microscopy combined with interaction-force-gradient sensing. , 1993, Physical review. B, Condensed matter.

[23]  Lukas Novotny,et al.  Low-temperature compatible I–V converter , 1992 .

[24]  J. T. Trujillo,et al.  Formation of silicon tips with <1 nm radius , 1990 .

[25]  Rolf Landauer,et al.  Can We Switch by Control of Quantum Mechanical Transmission , 1989 .

[26]  Rolf Landauer,et al.  Dissipation and noise immunity in computation and communication , 1988, Nature.

[27]  J.G. Smits,et al.  The constituent equations of piezoelectric heterogeneous bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  W. Brantley Calculated elastic constants for stress problems associated with semiconductor devices , 1973 .

[29]  L. Meirovitch Analytical Methods in Vibrations , 1967 .