Mass Transportation with LQ Cost Functions

We study the optimal transport problem in the Euclidean space where the cost function is given by the value function associated with a Linear Quadratic minimization problem. Under appropriate assumptions, we generalize Brenier’s Theorem proving existence and uniqueness of an optimal transport map. In the controllable case, we show that the optimal transport map has to be the gradient of a convex function up to a linear change of coordinates. We give regularity results and also investigate the non-controllable case.

[1]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[2]  C. Villani Optimal Transport: Old and New , 2008 .

[3]  Cédric Villani,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS , 2011 .

[4]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[5]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[6]  L. Kantorovich On a Problem of Monge , 2006 .

[7]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic systems , 1990 .

[8]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[9]  Robert J. McCann,et al.  The Ma–Trudinger–Wang curvature for natural mechanical actions , 2009 .

[10]  Alessio Figalli,et al.  Continuity and injectivity of optimal maps for non-negatively cross-curved costs , 2009 .

[11]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[12]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[13]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[14]  R. McCann,et al.  Hölder Continuity and Injectivity of Optimal Maps , 2011, 1107.1014.

[15]  Andrei Agrachev,et al.  Optimal transportation under nonholonomic constraints , 2007, 0710.0408.

[16]  Ludovic Rifford,et al.  Mass Transportation on Sub-Riemannian Manifolds , 2008, 0803.2917.

[17]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .