Mass Transportation with LQ Cost Functions
暂无分享,去创建一个
Jean-Baptiste Pomet | Ludovic Rifford | Ahed Hindawi | Jean-Baptiste Pomet | L. Rifford | Ahed Hindawi
[1] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[2] C. Villani. Optimal Transport: Old and New , 2008 .
[3] Cédric Villani,et al. NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS , 2011 .
[4] L. Caffarelli. Boundary regularity of maps with convex potentials – II , 1996 .
[5] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[6] L. Kantorovich. On a Problem of Monge , 2006 .
[7] Eduardo D. Sontag,et al. Mathematical control theory: deterministic systems , 1990 .
[8] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[9] Robert J. McCann,et al. The Ma–Trudinger–Wang curvature for natural mechanical actions , 2009 .
[10] Alessio Figalli,et al. Continuity and injectivity of optimal maps for non-negatively cross-curved costs , 2009 .
[11] E B Lee,et al. Foundations of optimal control theory , 1967 .
[12] Eduardo D. Sontag,et al. Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .
[13] L. Ambrosio,et al. Existence and stability results in the L 1 theory of optimal transportation , 2003 .
[14] R. McCann,et al. Hölder Continuity and Injectivity of Optimal Maps , 2011, 1107.1014.
[15] Andrei Agrachev,et al. Optimal transportation under nonholonomic constraints , 2007, 0710.0408.
[16] Ludovic Rifford,et al. Mass Transportation on Sub-Riemannian Manifolds , 2008, 0803.2917.
[17] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .