Photoacoustic image reconstruction: material detection and acoustical heterogeneities

The correct consideration of acoustical heterogeneities in the context of photoacoustic image reconstruction is an open topic. In this publication a physically motivated algorithm is proposed that reconstructs the optical absorption and diffusion coefficients using a gradient-based scheme. The simultaneous reconstruction of both material properties allows for a subsequent material identification and an accordant update of the acoustical material properties. The algorithm is general in terms of illumination scenarios, detection geometries and applications. No prior knowledge on material distributions needs to be provided, only expected materials have to be specified. Numerical experiments are performed to gain insight into the complex inverse problem and to validate the proposed method. Results show that acoustical heterogeneities are correctly detected improving the optical images.

[1]  Wolfgang A. Wall,et al.  Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation , 2016 .

[2]  Daniel Razansky,et al.  Optoacoustic image segmentation based on signal domain analysis , 2015, Photoacoustics.

[3]  Wiendelt Steenbergen,et al.  Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging , 2015, Photoacoustics.

[4]  Mark A. Anastasio,et al.  Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distributions in Photoacoustic Computed Tomography: A Numerical Investigation , 2015, IEEE Transactions on Computational Imaging.

[5]  Otmar Scherzer,et al.  A direct method for photoacoustic tomography with inhomogeneous sound speed , 2015, 1507.01741.

[6]  Markus Haltmeier,et al.  Single-stage reconstruction algorithm for quantitative photoacoustic tomography , 2015, 1501.04603.

[7]  M. Kronbichler,et al.  The dealii Library, Version 8.2 , 2015 .

[8]  Otmar Scherzer,et al.  Quantitative Photoacoustic Tomography with Piecewise Constant Material Parameters , 2014, SIAM J. Imaging Sci..

[9]  V. Ntziachristos,et al.  Acoustic Inversion in Optoacoustic Tomography: A Review , 2013, Current medical imaging reviews.

[10]  Simon R. Arridge,et al.  A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation , 2013 .

[11]  Jie Tian,et al.  Limited-view photoacoustic imaging based on an iterative adaptive weighted filtered backprojection approach. , 2013, Applied optics.

[12]  Mark A. Anastasio,et al.  Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically Inhomogeneous Media , 2013, IEEE Transactions on Medical Imaging.

[13]  Plamen Stefanov,et al.  Instability of the linearized problem in multiwave tomography of recovery both the source and the speed , 2012, 1211.6217.

[14]  Simon R. Arridge,et al.  Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography , 2012 .

[15]  Kui Ren,et al.  Quantitative photoacoustic imaging in the radiative transport regime , 2012, 1207.4664.

[16]  Katharina Kormann,et al.  A generic interface for parallel cell-based finite element operator application , 2012 .

[17]  S. Arridge,et al.  Quantitative spectroscopic photoacoustic imaging: a review. , 2012, Journal of biomedical optics.

[18]  Jie Chen,et al.  Quantitative photo-acoustic tomography with partial data , 2012, 1204.2213.

[19]  Guillaume Bal,et al.  On multi-spectral quantitative photoacoustic tomography in diffusive regime , 2012 .

[20]  Otmar Scherzer,et al.  Simultaneous Reconstructions of Absorption Density and Wave Speed with Photoacoustic Measurements , 2011, SIAM J. Appl. Math..

[21]  Junjie Yao,et al.  Photoacoustic tomography: fundamentals, advances and prospects. , 2011, Contrast media & molecular imaging.

[22]  Bradley E. Treeby,et al.  Erratum: Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian [J. Acoust. Soc. Am. 127, 2741–2748 (2010)] , 2011 .

[23]  Guillaume Bal,et al.  Multi-source quantitative photoacoustic tomography in a diffusive regime , 2011 .

[24]  Vasilis Ntziachristos,et al.  Model-based optoacoustic inversion with arbitrary-shape detectors. , 2011, Medical physics.

[25]  Habib Ammari,et al.  Reconstruction of the Optical Absorption Coefficient of a Small Absorber from the Absorbed Energy Density , 2011, SIAM J. Appl. Math..

[26]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[27]  Vasilis Ntziachristos,et al.  Statistical Approach for Optoacoustic Image Reconstruction in the Presence of Strong Acoustic Heterogeneities , 2011, IEEE Transactions on Medical Imaging.

[28]  B. Cox,et al.  Photoacoustic tomography in absorbing acoustic media using time reversal , 2010 .

[29]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.

[30]  Vasilis Ntziachristos,et al.  Fast Semi-Analytical Model-Based Acoustic Inversion for Quantitative Optoacoustic Tomography , 2010, IEEE Transactions on Medical Imaging.

[31]  Huabei Jiang,et al.  Transport-based quantitative photoacoustic tomography: simulations and experiments , 2010, Physics in medicine and biology.

[32]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[33]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[34]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[35]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[36]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[37]  B T Cox,et al.  Fast calculation of pulsed photoacoustic fields in fluids using k-space methods. , 2005, The Journal of the Acoustical Society of America.

[38]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[39]  Yuan Xu,et al.  Effects of acoustic heterogeneity in breast thermoacoustic tomography , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  S. Jacques,et al.  Iterative reconstruction algorithm for optoacoustic imaging. , 2002, The Journal of the Acoustical Society of America.

[41]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[42]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[43]  Barbara Kostrewski,et al.  Biomedical information: education and decision support systems , 1986, J. Inf. Sci..

[44]  A. Bell On the production and reproduction of sound by light , 1880, American Journal of Science.

[45]  Lihong V. Wang,et al.  Dark-Field Confocal Photoacoustic Microscopy , 2009 .