Space-Filling Latin Hypercube Designs for Computer Experiments (Replaced by CentER DP 2008-104)

In the area of computer simulation Latin hypercube designs play an important role.In this paper the class of maximin Latin hypercube designs is considered.Up to now only several two-dimensional designs and designs for some small number of points are known for this class.Using periodic designs and simulated annealing we extend the known results and construct approximate maximin Latin hypercube designs for up to ten dimensions and for up to 100 design points.All these designs can be downloaded from the website http://www.spacefillingdesigns.nl

[1]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[2]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[3]  Edwin R. van Dam,et al.  Two-Dimensional Minimax Latin Hypercube Designs , 2005, Discret. Appl. Math..

[4]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[5]  Marco Locatelli,et al.  Packing equal circles in a square: a deterministic global optimization approach , 2002, Discret. Appl. Math..

[6]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[7]  Janis Auzins,et al.  Response surface method for solution of structural identification problems , 2004 .

[8]  A. Forrester,et al.  Design and analysis of 'noisy' computer experiments , 2006 .

[9]  B.G.M. Husslage,et al.  Maximin designs for computer experiments , 2006 .

[10]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[11]  Dick den Hertog,et al.  Maximin Latin Hypercube Designs in Two Dimensions , 2007, Oper. Res..

[12]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[13]  Dick den Hertog,et al.  Optimizing color picture tubes by high-cost nonlinear programming , 2002, Eur. J. Oper. Res..

[14]  Dick den Hertog,et al.  Space-filling Latin hypercube designs for computer experiments , 2008 .

[15]  Kwok-Leung Tsui,et al.  A Minimum Bias Latin Hypercube Design , 2001 .

[16]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[17]  P. Cousseau,et al.  Optimal Design of Computer Experiments for Metamodel Generation Using I-OPT , 2000 .

[18]  Ken R. McNaught,et al.  A comparison of experimental designs in the development of a neural network simulation metamodel , 2004, Simul. Model. Pract. Theory.

[19]  Art B. Owen,et al.  9 Computer experiments , 1996, Design and analysis of experiments.

[20]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[21]  Dick den Hertog,et al.  Constrained Maximin Designs for Computer Experiments , 2003, Technometrics.

[22]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[23]  Patric R. J. Östergård,et al.  More Optimal Packings of Equal Circles in a Square , 1999, Discret. Comput. Geom..

[24]  Rex K. Kincaid,et al.  Approximate Solutions of Continuous Dispersion Problems , 2005, Ann. Oper. Res..

[25]  R. Stocki,et al.  A method to improve design reliability using optimal Latin hypercube sampling , 2005 .

[26]  Eva Riccomagno,et al.  Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).

[27]  Vassili Toropov,et al.  Optimum blank design for sheet metal forming based on the interaction of high- and low-fidelity FE models , 2006 .

[28]  Selden B. Crary,et al.  Design of Computer Experiments for Metamodel Generation , 2002 .

[29]  Johann Sienz,et al.  Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm , 2004 .

[30]  Wei Chen,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[31]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[32]  E. Erkut The discrete p-dispersion problem , 1990 .

[33]  R. Stocki,et al.  Stochastic simulation for crashworthiness , 2004 .

[34]  Tibor Csendes,et al.  A New Verified Optimization Technique for the "Packing Circles in a Unit Square" Problems , 2005, SIAM J. Optim..

[35]  David M. Steinberg,et al.  Comparison of designs for computer experiments , 2006 .

[36]  Jaroslaw Sobieszczanski-Sobieski,et al.  Multidisciplinary aerospace design optimization - Survey of recent developments , 1996 .

[37]  A. Chate,et al.  Identification of elastic properties of laminates based on experiment design , 2001 .