On generating maximal nondominated Benders cuts

In this paper, we explore certain algorithmic strategies for accelerating the convergence of Benders decomposition method via the generation of maximal nondominated cuts. Based on interpreting the seminal work of Magnanti and Wong (Operations Research, 29(3), 464–484, 1981) for generating nondominated cuts within a multiobjective framework, we propose an algorithmic strategy that utilizes a preemptively small perturbation of the right-hand-side of the Benders subproblem to generate maximal nondominated Benders cuts, as well as a complimentary strategy that generates an additional cut in each iteration via an alternative emphasis on decision variable weights. We also examine the computational effectiveness of solving a secondary subproblem using an objective cut as proposed by Magnanti and Wong versus identifying the Pareto-optimality region for cut generation by utilizing complementary slackness conditions. In addition, we exhibit how a standard feasibility cut can be extracted from the solution of subproblems that generate only optimality cuts through the use of artificial variables. With Magnanti and Wong’s baseline procedure approximated during implementation via the use of a core point estimation technique (Papadakos in Computers and Operations Research, 36(1), 176–195, 2009), these algorithmic strategies are tested on instances from the literature concerning the fixed charge network flow program.

[1]  Matteo Fischetti,et al.  Combinatorial Benders' Cuts for Mixed-Integer Linear Programming , 2006, Oper. Res..

[2]  Matteo Fischetti,et al.  A note on the selection of Benders’ cuts , 2010, Math. Program..

[3]  Hanif D. Sherali,et al.  A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture , 2013, Ann. Oper. Res..

[4]  Golbon Zakeri,et al.  Inexact Cuts in Benders Decomposition , 1999, SIAM J. Optim..

[5]  Hanif D. Sherali,et al.  Equivalent weights for lexicographic multi-objective programs: Characterizations and computations , 1982 .

[6]  A. Soyster,et al.  Preemptive and nonpreemptive multi-objective programming: Relationship and counterexamples , 1983 .

[7]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[8]  Thomas L. Magnanti,et al.  Decomposition methods for facility location problems , 1986 .

[9]  Marianthi G. Ierapetritou,et al.  Accelerating Benders method using covering cut bundle generation , 2010, Int. Trans. Oper. Res..

[10]  Alysson M. Costa A survey on benders decomposition applied to fixed-charge network design problems , 2005, Comput. Oper. Res..

[11]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[12]  T. Santoso A stochastic programming approach for supply chain network design under uncertainty , 2004 .

[13]  A. M. Geoffrion,et al.  Multicommodity Distribution System Design by Benders Decomposition , 1974 .

[14]  Marianthi G. Ierapetritou,et al.  Improving benders decomposition using maximum feasible subsystem (MFS) cut generation strategy , 2010, Comput. Chem. Eng..

[15]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[16]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[17]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[18]  Nikolaos Papadakos,et al.  Integrated airline scheduling , 2009, Comput. Oper. Res..

[19]  M. Laughton,et al.  Large-scale mixed integer programming: Benders-type heuristics , 1984 .

[20]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[21]  Tony J. Van Roy,et al.  Cross decomposition for mixed integer programming , 1983, Math. Program..

[22]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[23]  Nikolaos Papadakos,et al.  Practical enhancements to the Magnanti-Wong method , 2008, Oper. Res. Lett..

[24]  Michel Gendreau,et al.  Accelerating Benders Decomposition by Local Branching , 2009, INFORMS J. Comput..

[25]  Paul Wentges,et al.  Accelerating Benders' decomposition for the capacitated facility location problem , 1996, Math. Methods Oper. Res..

[26]  M. D. Devine,et al.  A Modified Benders' Partitioning Algorithm for Mixed Integer Programming , 1977 .

[27]  D. Klabjan,et al.  Integrated Airline Planning , 2004 .

[28]  Hanif D. Sherali,et al.  Optimum synthesis of discrete capacitated networks with multi-terminal commodity flow requirements , 2007, Optim. Lett..

[29]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[30]  Jean-François Cordeau,et al.  A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem , 2003, Comput. Oper. Res..

[31]  François Soumis,et al.  An integrated aircraft routing, crew scheduling and flight retiming model , 2005, Comput. Oper. Res..

[32]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..