One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials

There has been tremendous interest in using nanomaterials for advanced Li-ion battery electrodes, particularly to increase the energy density by using high specific capacity materials. Recently, it was demonstrated that one dimensional (1D) Si/Sn nanowires (NWs) and nanotubes (NTs) have great potential to achieve high energy density as well as long cycle life for the next generation of advanced energy storage applications. In this feature article, we review recent progress on Si-based NWs and NTs as high capacity anode materials. Fundamental understanding and future challenges on one dimensional nanostructured anode are also discussed.

[1]  L. B. Freund,et al.  Real-time stress evolution during Si1-xGex Heteroepitaxy: Dislocations, islanding, and segregation , 1997 .

[2]  S. T. Lee,et al.  Fabrication of Single‐Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles , 2006 .

[3]  Jaephil Cho,et al.  Nanoscale Si coating on the pore walls of SnO(2) nanotube anode for Li rechargeable batteries. , 2010, Chemical communications.

[4]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[5]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[6]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[7]  Jung-Ho Ahn,et al.  Nanostructured Si–C composite anodes for lithium-ion batteries , 2004 .

[8]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[9]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[10]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[11]  Yin Wu,et al.  Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. , 2005, Angewandte Chemie.

[12]  Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition , 2001 .

[13]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[14]  S. Dou,et al.  Study of silicon/polypyrrole composite as anode materials for Li-ion batteries , 2005 .

[15]  Min Gyu Kim,et al.  Nanocomposite of Amorphous Ge and Sn Nanoparticles as an Anode Material for Li Secondary Battery , 2009 .

[16]  N. Choi,et al.  Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte , 2007 .

[17]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[18]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[19]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[20]  Nam-Soon Choi,et al.  Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode , 2006 .

[21]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[22]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[23]  Jing Zhu,et al.  Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes , 2009 .

[24]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[25]  Shoji Yamaguchi,et al.  Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode , 2004 .

[26]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[27]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[28]  D. Aurbach,et al.  Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes , 2000 .

[29]  T. Takamura,et al.  Attainment of High Rate Capability of Si Film as The Anode of Li-ion Batteries , 2003 .

[30]  Heon Jung,et al.  Fast start-up reactor for partial oxidation of methane with electrically-heated metallic monolith catalyst , 2003 .

[31]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[32]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[33]  Martin Steinhart,et al.  Nanotubes by template wetting: a modular assembly system. , 2004, Angewandte Chemie.

[34]  J. Dahn,et al.  An Epoxy‐Silane Approach to Prepare Anode Materials for Rechargeable Lithium Ion Batteries , 1995 .

[35]  Wanli Xu,et al.  Composite Silicon Nanowire Anodes for Secondary Lithium-Ion Cells , 2010 .

[36]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[37]  Brian W. Sheldon,et al.  Monitoring Stress in Thin Films During Processing , 2003 .

[38]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[39]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[40]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[41]  Jun Chen,et al.  Fabrication of Ru and Ru-based functionalized nanotubes. , 2004, Journal of the American Chemical Society.

[42]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[43]  Yunjie Yan,et al.  Synthesis of Large‐Area Silicon Nanowire Arrays via Self‐Assembling Nanoelectrochemistry , 2002 .

[44]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[45]  Jing-ying Xie,et al.  Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries , 2007 .

[46]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[47]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[48]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[49]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[50]  J. Dahn,et al.  Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries , 1997 .

[51]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[52]  Seung M. Oh,et al.  Si-carbon core-shell composite anode in lithium secondary batteries , 2007 .

[53]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[54]  Michael Holzapfel,et al.  A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. , 2005, Chemical communications.

[55]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[56]  D. Aurbach,et al.  New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries , 1999 .

[57]  Jaephil Cho,et al.  Reversible Lithium Intercalation in Teardrop‐Shaped Ultrafine SnP0.94 Particles: An Anode Material for Lithium‐Ion Batteries , 2007 .

[58]  N. Imanishi,et al.  Electrochemical characterization of a novel Si–graphite–Li2.6Co0.4N composite as anode material for lithium secondary batteries , 2005 .

[59]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[60]  Y. Rosenberg,et al.  Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries , 1997 .

[61]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[62]  P. Novák,et al.  Chemical Vapor Deposited Silicon/Graphite Compound Material as Negative Electrode for Lithium-Ion Batteries , 2005 .

[63]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[64]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[65]  K. Möller,et al.  In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives , 2003 .

[66]  Qinmin Pan,et al.  Impedance Study on Graphite Encapsulated with Ionic Conducting Polymer for Lithium-Ion Batteries , 2003 .

[67]  Yung-Eun Sung,et al.  Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries , 2004 .

[68]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[69]  Jaephil Cho,et al.  Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media. , 2007, Nano letters.

[70]  P. Kumta,et al.  Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries , 2007 .

[71]  C. C. Ahn,et al.  Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities , 2004 .

[72]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[73]  P. Kumta,et al.  Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries , 2005 .

[74]  R. Holze,et al.  Modified natural graphite as anode material for lithium ion batteries , 2002 .

[75]  Qinmin Pan,et al.  Covalent modification of natural graphite with lithium benzoate multilayers via diazonium chemistry and their application in lithium ion batteries , 2007 .

[76]  T. Sakai,et al.  Micrometer-Scale Amorphous Si Thin-Film Electrodes Fabricated by Electron-Beam Deposition for Li-Ion Batteries , 2006 .

[77]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[78]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[79]  P. Kumta,et al.  Nanostructured Si / TiB2 Composite Anodes for Li-Ion Batteries , 2003 .

[80]  S. Dou,et al.  Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling , 2005 .

[81]  Yi Cui,et al.  Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries , 2010 .

[82]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[83]  Yair Ein-Eli,et al.  Chemical Oxidation: A Route to Enhanced Capacity in Li‐Ion Graphite Anodes , 1997 .

[84]  E. Peled,et al.  Improved Graphite Anode for Lithium‐Ion Batteries Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation , 1996 .

[85]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[86]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[87]  J. Dahn,et al.  A Comparison of the Reactions of the SiSn, SiAg, and SiZn Binary Systems with L3i , 2006 .

[88]  Yoji Shirato,et al.  Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes , 2004 .

[89]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[90]  Z. Wen,et al.  Preparation and Electrochemical Properties of Silicon/Carbon Composite Electrodes , 2005 .

[91]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[92]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[93]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[94]  Qinmin Pan,et al.  Novel Modified Graphite as Anode Material for Lithium-Ion Batteries , 2002 .

[95]  Yuliang Cao,et al.  Surface-modified graphite as an improved intercalating anode for lithium-ion batteries , 2003 .

[96]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[97]  E. Peled,et al.  A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li‐Ion Batteries , 1999 .

[98]  Hyun-Wook Lee,et al.  Spinel LiMn2O4 nanorods as lithium ion battery cathodes. , 2008, Nano letters.

[99]  Cheol‐Min Park,et al.  A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries , 2009 .

[100]  F. Himpsel,et al.  Nanowires by Step Decoration , 1999 .

[101]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[102]  K. Abraham,et al.  The Role of Carbonate Solvents on Lithium Intercalation into Graphite , 2007 .

[103]  Mo-hua Yang,et al.  Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive , 2005 .

[104]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .