An infeasible-point subgradient method using adaptive approximate projections

We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum ℓ1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.

[1]  Hanif D. Sherali,et al.  A variable target value method for nondifferentiable optimization , 2000, Oper. Res. Lett..

[2]  Stephen J. Wright,et al.  Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..

[3]  Dmitry M. Malioutov,et al.  Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[4]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[5]  Hanif D. Sherali,et al.  Convergence and Computational Analyses for Some Variable Target Value and Subgradient Deflection Methods , 2006, Comput. Optim. Appl..

[6]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[7]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[8]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[9]  András Prékopa,et al.  Contributions to the theory of stochastic programming , 1973, Math. Program..

[10]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[11]  P. Kall STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .

[12]  A. Zaslavski The Projected Subgradient Method for Nonsmooth Convex Optimization in the Presence of Computational Errors , 2010 .

[13]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[14]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..

[15]  D. Bertsekas,et al.  A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS WITH NONDIFFERENTIABLE COST FUNCTIONALS , 1973 .

[16]  A. Löbel Optimale Vehicle Scheduling in Public Transit , 1997 .

[17]  D. Bertsekas,et al.  Incremental subgradient methods for nondifferentiable optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[18]  Daniel Kuhn,et al.  Convergent Bounds for Stochastic Programs with Expected Value Constraints , 2009 .

[19]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[20]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[21]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[22]  W. K. Haneveld Duality in Stochastic Linear and Dynamic Programming , 1986 .

[23]  Karsten Urban Adaptive Wavelet Methods , 2008 .

[24]  Laurence A. Wolsey,et al.  Two “well-known” properties of subgradient optimization , 2009, Math. Program..

[25]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[26]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[27]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[28]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[29]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[30]  Krzysztof C. Kiwiel,et al.  Convergence of Approximate and Incremental Subgradient Methods for Convex Optimization , 2003, SIAM J. Optim..

[31]  H. Sherali,et al.  On the choice of step size in subgradient optimization , 1981 .

[32]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[33]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[34]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[35]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[36]  R. Jagannathan,et al.  Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..

[37]  M. Patriksson,et al.  Conditional subgradient optimization -- Theory and applications , 1996 .

[38]  O. Scherzer,et al.  Necessary and sufficient conditions for linear convergence of ℓ1‐regularization , 2011 .

[39]  Dimitri P. Bertsekas,et al.  The effect of deterministic noise in subgradient methods , 2010, Math. Program..

[40]  Jeffery L. Kennington,et al.  A generalization of Polyak's convergence result for subgradient optimization , 1987, Math. Program..

[41]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[42]  Stephen P. Boyd,et al.  Stochastic Subgradient Methods , 2007 .

[43]  Dirk A. Lorenz,et al.  Computing and analyzing recoverable supports for sparse reconstruction , 2013, Advances in Computational Mathematics.

[44]  Alvaro R. De Pierro,et al.  Incremental Subgradients for Constrained Convex Optimization: A Unified Framework and New Methods , 2009, SIAM J. Optim..

[45]  Sehun Kim,et al.  Variable target value subgradient method , 1991, Math. Program..

[46]  Patrick L. Combettes,et al.  An adaptive level set method for nondifferentiable constrained image recovery , 2002, IEEE Trans. Image Process..

[47]  Mark W. Schmidt,et al.  GROUP SPARSITY VIA LINEAR-TIME PROJECTION , 2008 .

[48]  Jean-Louis Goffin,et al.  Convergence of a simple subgradient level method , 1999, Math. Program..

[49]  K. C. Kiwiel,et al.  Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization , 1998 .

[50]  Antonio Frangioni,et al.  Convergence Analysis of Deflected Conditional Approximate Subgradient Methods , 2009, SIAM J. Optim..