An infeasible-point subgradient method using adaptive approximate projections
暂无分享,去创建一个
[1] Hanif D. Sherali,et al. A variable target value method for nondifferentiable optimization , 2000, Oper. Res. Lett..
[2] Stephen J. Wright,et al. Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..
[3] Dmitry M. Malioutov,et al. Homotopy continuation for sparse signal representation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[4] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..
[5] Hanif D. Sherali,et al. Convergence and Computational Analyses for Some Variable Target Value and Subgradient Deflection Methods , 2006, Comput. Optim. Appl..
[6] Krzysztof C. Kiwiel,et al. Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..
[7] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[8] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[9] András Prékopa,et al. Contributions to the theory of stochastic programming , 1973, Math. Program..
[10] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[11] P. Kall. STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .
[12] A. Zaslavski. The Projected Subgradient Method for Nonsmooth Convex Optimization in the Presence of Computational Errors , 2010 .
[13] Peter Kall,et al. Stochastic Linear Programming , 1975 .
[14] Adrian S. Lewis,et al. Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..
[15] D. Bertsekas,et al. A DESCENT NUMERICAL METHOD FOR OPTIMIZATION PROBLEMS WITH NONDIFFERENTIABLE COST FUNCTIONALS , 1973 .
[16] A. Löbel. Optimale Vehicle Scheduling in Public Transit , 1997 .
[17] D. Bertsekas,et al. Incremental subgradient methods for nondifferentiable optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[18] Daniel Kuhn,et al. Convergent Bounds for Stochastic Programs with Expected Value Constraints , 2009 .
[19] M. R. Osborne,et al. A new approach to variable selection in least squares problems , 2000 .
[20] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[21] Alfredo N. Iusem,et al. On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..
[22] W. K. Haneveld. Duality in Stochastic Linear and Dynamic Programming , 1986 .
[23] Karsten Urban. Adaptive Wavelet Methods , 2008 .
[24] Laurence A. Wolsey,et al. Two “well-known” properties of subgradient optimization , 2009, Math. Program..
[25] Maarten H. van der Vlerk,et al. Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..
[26] John R. Birge,et al. Introduction to Stochastic Programming , 1997 .
[27] A. Charnes,et al. Chance-Constrained Programming , 1959 .
[28] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[29] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[30] Krzysztof C. Kiwiel,et al. Convergence of Approximate and Incremental Subgradient Methods for Convex Optimization , 2003, SIAM J. Optim..
[31] H. Sherali,et al. On the choice of step size in subgradient optimization , 1981 .
[32] Boris Polyak. Minimization of unsmooth functionals , 1969 .
[33] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[34] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[35] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[36] R. Jagannathan,et al. Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..
[37] M. Patriksson,et al. Conditional subgradient optimization -- Theory and applications , 1996 .
[38] O. Scherzer,et al. Necessary and sufficient conditions for linear convergence of ℓ1‐regularization , 2011 .
[39] Dimitri P. Bertsekas,et al. The effect of deterministic noise in subgradient methods , 2010, Math. Program..
[40] Jeffery L. Kennington,et al. A generalization of Polyak's convergence result for subgradient optimization , 1987, Math. Program..
[41] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[42] Stephen P. Boyd,et al. Stochastic Subgradient Methods , 2007 .
[43] Dirk A. Lorenz,et al. Computing and analyzing recoverable supports for sparse reconstruction , 2013, Advances in Computational Mathematics.
[44] Alvaro R. De Pierro,et al. Incremental Subgradients for Constrained Convex Optimization: A Unified Framework and New Methods , 2009, SIAM J. Optim..
[45] Sehun Kim,et al. Variable target value subgradient method , 1991, Math. Program..
[46] Patrick L. Combettes,et al. An adaptive level set method for nondifferentiable constrained image recovery , 2002, IEEE Trans. Image Process..
[47] Mark W. Schmidt,et al. GROUP SPARSITY VIA LINEAR-TIME PROJECTION , 2008 .
[48] Jean-Louis Goffin,et al. Convergence of a simple subgradient level method , 1999, Math. Program..
[49] K. C. Kiwiel,et al. Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization , 1998 .
[50] Antonio Frangioni,et al. Convergence Analysis of Deflected Conditional Approximate Subgradient Methods , 2009, SIAM J. Optim..