Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks

We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit determinant. We show that every paraunitary matrix can be characterized by a special paraunitary matrix and a phase factor. Therefore, the design of paraunitary matrices (and thus of orthogonal filter banks) becomes the design of special paraunitary matrices, which requires a smaller set of nonlinear equations. Moreover, we provide a complete characterization of special paraunitary matrices in the Cayley domain, which converts nonlinear constraints into linear constraints. Our method greatly simplifies the design of MD orthogonal filter banks and leads to complete characterizations of such filter banks.

[1]  Alfred Fettweis,et al.  Skew symmetry and orthogonality in the equivalent representation problem of a time-varying multiport inductor , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Jan P. Allebach,et al.  The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices , 1991 .

[3]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[4]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[5]  Mark J. T. Smith,et al.  A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..

[6]  Minh N. Do,et al.  Multidimensional orthogonal filter bank characterization and design using the Cayley transform , 2005, IEEE Transactions on Image Processing.

[7]  Martin Vetterli,et al.  Wavelets and recursive filter banks , 1993, IEEE Trans. Signal Process..

[8]  D H Tay,et al.  Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables , 1993, IEEE Trans. Image Process..

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Alfred Fettweis,et al.  On synthesizable multidimensional lossless two-ports , 1988 .

[11]  Gunnar Karlsson,et al.  Theory of two-dimensional multirate filter banks , 1990, IEEE Trans. Acoust. Speech Signal Process..

[12]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[13]  Karlheinz Gröchenig,et al.  Multiresolution analysis, Haar bases, and self-similar tilings of Rn , 1992, IEEE Trans. Inf. Theory.

[14]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[15]  P. P. Vaidyanathan,et al.  Recent developments in multidimensional multirate systems , 1993, IEEE Trans. Circuits Syst. Video Technol..

[16]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[17]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[18]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .

[19]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .