Proton Beam Writing of Chalcogenide Glass: A New Approach for Fabrication of Channel Waveguides at Telecommunication O and C Bands

We report on proton beam writing of chalcogenide glass for the fabrication of channel waveguides. The focused proton beam at an energy of 1 MeV induces positive refractive index changes, forming channel waveguide structures in the irradiated region. The channel waveguides support both the TE and TM polarizations from the visible to near-infrared telecommunication O and C bands. Based on the maximum value of the refractive index contrast achieved by measuring the numerical aperture of the waveguide channels, we reconstruct the refractive index distribution and calculate the modal profiles of waveguides in the near-infrared wavelengths. The calculated modal profiles are in very good agreement with the experimental results. The minimum propagation loss is measured to be ~2.0 dB/cm at the wavelength of 1064 nm.

[1]  A. Bettiol,et al.  Proton-beam writing of poly-methylmethacrylate buried channel waveguides , 2006, Journal of Lightwave Technology.

[2]  Feng Chen,et al.  Proton beam writing of Nd:GGG crystals as new waveguide laser sources. , 2011, Optics letters.

[3]  M. Breese,et al.  Proton beam writing , 2007 .

[4]  Angela B. Seddon,et al.  Chalcogenide glasses : a review of their preparation, properties and applications , 1995 .

[5]  Robert W. Eason,et al.  Pulsed laser deposition of Ga‐La‐S chalcogenide glass thin film optical waveguides , 1993 .

[6]  Ke Liu,et al.  Erbium-doped waveguide amplifiers fabricated using focused proton beam writing , 2004 .

[7]  A. Roberts,et al.  Direct imaging of end-of-range compaction in ion beam irradiated silica waveguides by atomic force microscopy , 2000 .

[8]  P. Laporta,et al.  Lasing in femtosecond laser written optical waveguides , 2008 .

[9]  J. R. Vázquez de Aldana,et al.  Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation. , 2012, Optics express.

[10]  A. Kar,et al.  Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide. , 2012, Optics express.

[11]  Andreas Tünnermann,et al.  Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser , 2009 .

[12]  A. Seddon,et al.  The decisive role of oxide content in the formation and crystallization of gallium-lanthanum-sulfide glasses , 1999 .

[13]  Feng Chen,et al.  Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation , 2007 .

[14]  Feng Chen,et al.  Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation. , 2009, Optics letters.

[15]  Andrew A. Bettiol,et al.  Fabrication of buried channel waveguides in photosensitive glass using proton beam writing , 2006 .

[16]  Feng Chen,et al.  Micro‐ and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications , 2012 .

[17]  P Olivero,et al.  Evidence of light guiding in ion-implanted diamond. , 2010, Physical review letters.

[18]  P. Günter,et al.  Micromachining of ridge optical waveguides on top of He+ -implanted Β-BaB2O4 crystals by femtosecond laser ablation , 2006 .

[19]  Graham T. Reed,et al.  Freestanding waveguides in silicon , 2007 .

[20]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[21]  Ann Roberts,et al.  Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation , 1996 .

[22]  A. Bettiol,et al.  Microstructuring of Nd:YAG crystals by proton-beam writing. , 2010, Optics letters.

[23]  Andrew A. Bettiol,et al.  Three-dimensional nanolithography using proton beam writing , 2003 .

[24]  G Z Mashanovich,et al.  Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation. , 2009, Optics letters.

[25]  Feng-Lei Hong,et al.  Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide. , 2009, Optics express.

[26]  Fatima Toor,et al.  Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. , 2010, Optics letters.

[27]  Amol Choudhary,et al.  Ion-exchanged Tm3+:glass channel waveguide laser. , 2013, Optics letters.

[28]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[29]  Jian Sun,et al.  466 mW green light generation using annealed proton-exchanged periodically poled MgO: LiNbO3 ridge waveguides. , 2012, Optics letters.

[30]  David N. Payne,et al.  Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass , 1997 .

[31]  Feng Chen,et al.  Development of ion-implanted optical waveguides in optical materials: A review , 2007 .

[32]  Ishwar D. Aggarwal,et al.  Applications of chalcogenide glass optical fibers , 2002 .

[33]  P. Leech,et al.  Channel waveguides formed in fused silica and silica-on-silicon by Si, P and Ge ion implantation , 1996 .

[34]  S. Field,et al.  Ion-implanted Nd:GGG channel waveguide laser. , 1992, Optics letters.

[35]  T. Narusawa,et al.  Proton-Implanted Planar Waveguide in Gallium Lanthanum Sulphide Glass , 2010 .