High-resolution Modelling With Bi-dimensional Shallow Water Equations Based Codes – High-Resolution Topographic Data Use for Flood Hazard Assessment Over Urban and Industrial Environments☆

Abstract The availability of new generation of High-Resolution (HR) topographic datasets combined with high performance computing resources opens the door to HR hydraulic simulations for risk assessment. LiDAR and photo-interpreted datasets are promising for HR Digital Elevation Model (DEM) generation, allowing inclusion of fine (infra-metric) aboveground structures influencing overland flow hydrodynamic in urban environment. Nonetheless, if topographic data is one key input for free surface hydraulic modelling using standard 2D Shallow Water Equations (SWEs) based codes, several categories of technical and numerical challenges arise to use HR dataset within numerical modelling. This proceeding explores the new possibilities, advantages and limits of HR topographic data use with 2D SWEs based numerical modelling tools for flood hazard assessment and proposes an original method for uncertainty assessment. The concepts of HR topographic data and 2D SWE based numerical modelling are reviewed. Using LiDAR and photo-interpreted datasets, different 2D SWEs based codes (Mike 21, Mike 21 FM, TELEMAC-2D, FullSWOF_2D) and strategies are tested to encompass HR DEM in intense rainfall and river flood events simulations ranging from industrial site scale to a megacity district scale (Nice, France). Tools and methods for assessing uncertainties related to HR DEM use with 2D SWE based codes are developed to perform a spatial global sensitivity analysis related to HR topographic data use. Computed sensitivity indices maps quantify the importance and spatial variability of uncertainties introduced by modeller choices regarding ways HR topographic information are integrated in models, compared to measurement errors. Impact of thin aboveground features inclusion, even at a decreased resolution, appears as a crucial asset in flood risk assessment on urban area, but requires providing caution to decision makers along with models’ results.

[1]  B. Sanders,et al.  Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling , 2008 .

[2]  Philippe Gourbesville,et al.  Use of 3D classified topographic data with FullSWOF for high resolution simulation of a river flood event over a dense urban area , 2016, ArXiv.

[3]  Peter A. Vanrolleghem,et al.  Uncertainty in the environmental modelling process - A framework and guidance , 2007, Environ. Model. Softw..

[4]  Berend van Wachem,et al.  Volume of fluid methods for immiscible-fluid and free-surface flows , 2008 .

[5]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[6]  Nathalie Saint-Geours,et al.  Sensitivity analysis of spatial models: application to cost-benefit analysis of flood risk management plans , 2012 .

[7]  Philippe Gourbesville Data and hydroinformatics: new possibilities and challenges. , 2009 .

[8]  Paul D. Bates,et al.  Investigating the Behaviour of Two-Dimensional Finite Element Models of Compound Channel Flow , 1997 .

[9]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[10]  A. Mynett,et al.  Urban flood modelling combining top-view LiDAR data with ground-view SfM observations , 2015 .

[11]  Dragan Savic,et al.  Attribution of flood risk in urban areas , 2008 .

[12]  J. Nikuradse Laws of Flow in Rough Pipes , 1950 .

[13]  Hélène Coullon,et al.  Parallelization of Shallow-Water Equations with the Algorithmic Skeleton Library SkelGIS , 2013, ICCS.

[14]  Hélène Coullon,et al.  FullSWOF_Paral: Comparison of two parallelization strategies (MPI and SKELGIS) on a software designed for hydrology applications , 2013, ArXiv.

[15]  Silvia Bozzi,et al.  Roughness and Discharge Uncertainty in 1D Water Level Calculations , 2015, Environmental Modeling & Assessment.

[16]  J. A. Cunge,et al.  Intégration numérique des équations d'écoulement de barré de Saint-Venant par un schéma implicite de différences finies , 1964 .

[17]  Bahman Soheilian,et al.  Road side detection and reconstruction using LIDAR sensor , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).

[18]  R D Richtmyek,et al.  Survey of the Stability of Linear Finite Difference Equations , 2022 .

[19]  Philippe Gourbesville,et al.  Uncertainty related to high resolution topographic data use for flood event modeling over urban areas: toward a sensitivity analysis approach , 2015 .

[20]  S. Wechsler Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .

[21]  Allaoua Boumediene Méthodes Numériques Appliquées , 2018 .

[22]  David L. George,et al.  Adaptive finite volume methods with well‐balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam‐break flood (France, 1959) , 2011 .

[23]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[24]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[25]  Coullon Helene,et al.  Algorithmic skeleton library for scientific simulations: SkelGIS , 2013, 2013 International Conference on High Performance Computing & Simulation (HPCS).

[26]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[27]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[28]  M. Podhorányi,et al.  Inaccuracy introduced by LiDAR-generated cross sections and its impact on 1D hydrodynamic simulations , 2014, Environmental Earth Sciences.

[29]  Thomas Ertl,et al.  Generation of Mesh Variants via Volumetrical Representation and Subsequent Mesh Optimisation , 2005, IMR.

[30]  Stefano Tarantola,et al.  A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study , 2014, Environ. Model. Softw..

[31]  Hrvoje Jasak,et al.  Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .

[32]  Paul-Louis George,et al.  The advancing-front mesh generation method revisited , 1994 .

[33]  Josiane Zerubia,et al.  Structural Approach for Building Reconstruction from a Single DSM , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[35]  M. Pirotton,et al.  Detailed Inundation Modelling Using High Resolution DEMs , 2010 .

[36]  Hicham Ouarit,et al.  Réduction des systèmes à paramètres distribués. Application à la commande optimale robuste des canaux d'irrigation , 2004 .

[37]  Vincent Guinot Linear advection modelling: the issue of divergent flows , 2000 .

[38]  J. Andrew Chadwick HYDRAULIC MODELLING – AN INTRODUCTION: PRINCIPLES, METHODS AND APPLICATIONS , 2010 .

[39]  Philippe Gourbesville,et al.  Hydroinformatics and Its Role in Flood Management , 2014 .

[40]  Yann Richet,et al.  Propagation des incertitudes dans les modèles hydrauliques 1D , 2015 .

[41]  Vincent Guinot Wave Propagation in Fluids: Models and Numerical Techniques , 2008 .

[42]  M. B. Abbott,et al.  SYSTEM 21, “JUPITER” (A DESIGN SYSTEM FOR TWO-DIMENSIONAL NEARLY-HORIZONTAL FLOWS) , 1973 .

[43]  B Russo,et al.  Methodologies to study the surface hydraulic behaviour of urban catchments during storm events. , 2011, Water science and technology : a journal of the International Association on Water Pollution Research.

[44]  Stefano Tarantola,et al.  Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..

[45]  F. Nex,et al.  UAV for 3D mapping applications: a review , 2014 .

[46]  R. Barber,et al.  TELEMAC: An efficient hydrodynamics suite for massively parallel architectures , 2011 .

[47]  Paul D. Bates,et al.  Optimal use of high‐resolution topographic data in flood inundation models , 2003 .

[48]  Laurence Smith,et al.  The role of expert opinion in environmental modelling , 2012, Environ. Model. Softw..

[49]  Olivier Delestre,et al.  SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies , 2011, 1110.0288.

[50]  M. Abily,et al.  Ruissellement de surface en milieu urbain : stratégies d’intégration de données topographiques haute résolution en modélisation hydraulique 2D , 2015 .

[51]  Florian Pappenberger,et al.  Multi-method global sensitivity analysis of flood inundation models. , 2008 .

[52]  Kaiguang Zhao,et al.  Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues , 2010, Remote. Sens..

[53]  Jean-Stéphane Bailly,et al.  Analyse de sensibilité globale d'un modèle spatialisé pour l'évaluation économique du risque d'inondation , 2011 .

[54]  A. Habib,et al.  Photogrammetric and Lidar Data Registration Using Linear Features , 2005 .

[55]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[56]  C. Sampson,et al.  Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data , 2011 .

[57]  Yoshihisa Kawahara,et al.  The Uncertainty of Local Flow Parameters During Inundation Flow Over Complex Topographies with Elevation Errors , 2013 .

[58]  Keith Beven,et al.  Influence of uncertain boundary conditions and model structure on flood inundation predictions. , 2006 .

[59]  B. Sanders Evaluation of on-line DEMs for flood inundation modeling , 2007 .

[60]  Stéphane Cordier,et al.  FullSWOF: A software for overland flow simulation / FullSWOF : un logiciel pour la simulation du ruissellement , 2012, ArXiv.

[61]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[62]  Theo G. Schmitt,et al.  DETAILED DIGITAL SURFACE MODEL ( DSM ) GENERATION AND AUTOMATIC OBJECT DETECTION TO FACILITATE MODELLING OF URBAN FLOODING , 2009 .

[63]  Philippe Gourbesville,et al.  Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling , 2016, Environ. Model. Softw..

[64]  Bertrand Iooss,et al.  Global sensitivity analysis for models with spatially dependent outputs , 2009, 0911.1189.

[65]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[66]  Andreas Scheidegger,et al.  Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas , 2015 .

[67]  Xiaoye Liu,et al.  Airborne LiDAR for DEM generation: some critical issues , 2008 .

[68]  Philippe Gourbesville,et al.  Performance assessment of modelling tools for high resolution runoff simulation over an industrial site , 2013 .

[69]  John W. Fisher,et al.  Automatic registration of LIDAR and optical images of urban scenes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Frédéric Grelot,et al.  Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies , 2014, Environ. Model. Softw..

[71]  Patrick M. Reed,et al.  Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models , 2013 .

[72]  Florent Lafarge,et al.  Building large urban environments from unstructured point data , 2011, 2011 International Conference on Computer Vision.

[73]  Rainald Lhner Applied Computational Fluid Dynamics Techniques , 2008 .

[74]  V. Merwade,et al.  Estimation of uncertainty propagation in flood inundation mapping using a 1‐D hydraulic model , 2015 .

[75]  P. Bates,et al.  Two dimensional finite element modelling of floodplain flow , 1999 .

[76]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[77]  Thomas D. M. Willis,et al.  Systematic analysis of uncertainty in flood inundation modelling , 2014 .

[78]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[79]  Marie-Odile Bristeau,et al.  Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes , 2001 .

[80]  Robert M. Kirby,et al.  Parallel Scientific Computing in C++ and MPI , 2003 .

[81]  J. Hervouet Hydrodynamics of Free Surface Flows , 2007 .

[82]  Jean-Stéphane Bailly,et al.  Very-high-resolution mapping of river-immersed topography by remote sensing , 2008 .

[83]  Rainald Löhner,et al.  Automatic unstructured grid generators , 1997 .

[84]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[85]  Wilfried Linder,et al.  Digital Photogrammetry: A Practical Course , 2016 .

[86]  Fabio Remondino,et al.  UAV PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING - CURRENT STATUS AND FUTURE PERSPECTIVES - , 2012 .

[87]  Ad McCowan,et al.  Improving the Performance of a Two-dimensional Hydraulic Model for Floodplain Applications , 2001 .

[88]  H. Rusche Computational fluid dynamics of dispersed two-phase flows at high phase fractions , 2003 .

[89]  C. Song,et al.  Urban 3D GIS From LiDAR and digital aerial images , 2004, Comput. Geosci..

[90]  F. Dottori,et al.  Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling , 2013 .

[91]  Roger Moussa,et al.  Approximation zones of the Saint-Venant equations f flood routing with overbank flow , 2000 .

[92]  F. Holly,et al.  INVALIDITY OF PREISSMANN SCHEME FOR TRANSCRITICAL FLOW , 1997 .

[93]  Jean A. Cunge,et al.  Of data and models , 2003 .

[94]  T. Sturm,et al.  Open Channel Hydraulics , 2001 .

[95]  F. Menter Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows , 1993 .

[96]  D. Fernández,et al.  Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis , 2010 .

[97]  Jing Li,et al.  Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas , 2009 .

[98]  Claire-Marie Duluc,et al.  Un nouveau guide sur la protection des installations nucléaires contre l'inondation d'origine externe , 2014 .

[99]  Philippe Gourbesville,et al.  HIGH RESOLUTION DIGITAL ELEVATION MODELS: A MAJOR INTEREST FOR URBAN FLOODING MANAGEMENT , 2004 .

[100]  Olivier Delestre,et al.  A limitation of the hydrostatic reconstruction technique for Shallow Water equations , 2012 .

[101]  Philippe Gourbesville,et al.  Calibration of physically based models: back to basics? , 2003 .

[102]  N. Weatherill Delaunay triangulation in computational fluid dynamics , 1992 .

[103]  Jean A. Cunge What Do We Model? What Results Do We Get? An Anatomy of Modelling Systems Foundations , 2014 .

[104]  F. Pappenberger,et al.  Ignorance is bliss: Or seven reasons not to use uncertainty analysis , 2006 .

[105]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[106]  Xavier Briottet,et al.  Very high resolution land cover extraction in urban areas , 2013 .

[107]  Daniel G. Aliaga,et al.  A Survey of Urban Reconstruction , 2013, Comput. Graph. Forum.

[108]  V. Guinot,et al.  Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations , 2012, Reliab. Eng. Syst. Saf..

[109]  Hélène Coullon,et al.  Comparison and Validation of Two Parallelization Approaches of FullSWOF_2D Software on a Real Case , 2016 .

[110]  Roger Alexander Falconer,et al.  A boundary-fitted numerical model for flood routing with shock capturing , 2007 .

[111]  Norbert Pfeifer,et al.  Optimisation of LiDAR derived terrain models for river flow modelling , 2008 .

[112]  R. Tsubaki,et al.  Relation Unstructured grid generation using LiDAR data for urban flood inundation modeling , 2022 .

[113]  Robert L. Meakin Adaptive spatial partitioning and refinement for overset structured grids , 2000 .

[114]  Wilfried Linder,et al.  Digital Photogrammetry , 2003 .

[115]  C. Strecha,et al.  The Accuracy of Automatic Photogrammetric Techniques on Ultra-light UAV Imagery , 2012 .

[116]  Paul D. Bates,et al.  Distributed Sensitivity Analysis of Flood Inundation Model Calibration , 2005 .

[117]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[118]  S. Djordjević,et al.  Potential and limitations of 1D modelling of urban flooding , 2004 .

[119]  Bertrand Iooss Revue sur l’analyse de sensibilité globale de modèles numériques , 2011 .

[120]  Qihao Weng,et al.  Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends , 2012 .

[121]  W. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[122]  Philippe Gourbesville,et al.  Use of Standard 2D Numerical Modeling Tools to Simulate Surface Runoff Over an Industrial Site: Feasibility and Comparative Performance Survey Over a Test Case , 2014 .

[123]  G. Priestnalla,et al.  Extracting urban features from LiDAR digital surface models , 2022 .

[124]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[125]  Stefania Angela Ciliberti,et al.  2D analysis for local flooding assessment in a new square of Barcelona during storm events , 2008 .