High-resolution Modelling With Bi-dimensional Shallow Water Equations Based Codes – High-Resolution Topographic Data Use for Flood Hazard Assessment Over Urban and Industrial Environments☆
暂无分享,去创建一个
Abily Morgan | Delestre Olivier | Bertrand Nathalie | Duluc Claire-Marie | Gourbesville Philippe | A. Morgan | Delestre Olivier | Bertrand Nathalie | Duluc Claire-Marie | Gourbesville Philippe
[1] B. Sanders,et al. Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling , 2008 .
[2] Philippe Gourbesville,et al. Use of 3D classified topographic data with FullSWOF for high resolution simulation of a river flood event over a dense urban area , 2016, ArXiv.
[3] Peter A. Vanrolleghem,et al. Uncertainty in the environmental modelling process - A framework and guidance , 2007, Environ. Model. Softw..
[4] Berend van Wachem,et al. Volume of fluid methods for immiscible-fluid and free-surface flows , 2008 .
[5] Emmanuel Audusse,et al. A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..
[6] Nathalie Saint-Geours,et al. Sensitivity analysis of spatial models: application to cost-benefit analysis of flood risk management plans , 2012 .
[7] Philippe Gourbesville. Data and hydroinformatics: new possibilities and challenges. , 2009 .
[8] Paul D. Bates,et al. Investigating the Behaviour of Two-Dimensional Finite Element Models of Compound Channel Flow , 1997 .
[9] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[10] A. Mynett,et al. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations , 2015 .
[11] Dragan Savic,et al. Attribution of flood risk in urban areas , 2008 .
[12] J. Nikuradse. Laws of Flow in Rough Pipes , 1950 .
[13] Hélène Coullon,et al. Parallelization of Shallow-Water Equations with the Algorithmic Skeleton Library SkelGIS , 2013, ICCS.
[14] Hélène Coullon,et al. FullSWOF_Paral: Comparison of two parallelization strategies (MPI and SKELGIS) on a software designed for hydrology applications , 2013, ArXiv.
[15] Silvia Bozzi,et al. Roughness and Discharge Uncertainty in 1D Water Level Calculations , 2015, Environmental Modeling & Assessment.
[16] J. A. Cunge,et al. Intégration numérique des équations d'écoulement de barré de Saint-Venant par un schéma implicite de différences finies , 1964 .
[17] Bahman Soheilian,et al. Road side detection and reconstruction using LIDAR sensor , 2013, 2013 IEEE Intelligent Vehicles Symposium (IV).
[18] R D Richtmyek,et al. Survey of the Stability of Linear Finite Difference Equations , 2022 .
[19] Philippe Gourbesville,et al. Uncertainty related to high resolution topographic data use for flood event modeling over urban areas: toward a sensitivity analysis approach , 2015 .
[20] S. Wechsler. Uncertainties associated with digital elevation models for hydrologic applications: a review , 2006 .
[21] Allaoua Boumediene. Méthodes Numériques Appliquées , 2018 .
[22] David L. George,et al. Adaptive finite volume methods with well‐balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam‐break flood (France, 1959) , 2011 .
[23] J. Remacle,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[24] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[25] Coullon Helene,et al. Algorithmic skeleton library for scientific simulations: SkelGIS , 2013, 2013 International Conference on High Performance Computing & Simulation (HPCS).
[26] Alfredo Bermúdez,et al. Upwind methods for hyperbolic conservation laws with source terms , 1994 .
[27] Qihao Weng,et al. A survey of image classification methods and techniques for improving classification performance , 2007 .
[28] M. Podhorányi,et al. Inaccuracy introduced by LiDAR-generated cross sections and its impact on 1D hydrodynamic simulations , 2014, Environmental Earth Sciences.
[29] Thomas Ertl,et al. Generation of Mesh Variants via Volumetrical Representation and Subsequent Mesh Optimisation , 2005, IMR.
[30] Stefano Tarantola,et al. A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study , 2014, Environ. Model. Softw..
[31] Hrvoje Jasak,et al. Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .
[32] Paul-Louis George,et al. The advancing-front mesh generation method revisited , 1994 .
[33] Josiane Zerubia,et al. Structural Approach for Building Reconstruction from a Single DSM , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[34] Max D. Morris,et al. Factorial sampling plans for preliminary computational experiments , 1991 .
[35] M. Pirotton,et al. Detailed Inundation Modelling Using High Resolution DEMs , 2010 .
[36] Hicham Ouarit,et al. Réduction des systèmes à paramètres distribués. Application à la commande optimale robuste des canaux d'irrigation , 2004 .
[37] Vincent Guinot. Linear advection modelling: the issue of divergent flows , 2000 .
[38] J. Andrew Chadwick. HYDRAULIC MODELLING – AN INTRODUCTION: PRINCIPLES, METHODS AND APPLICATIONS , 2010 .
[39] Philippe Gourbesville,et al. Hydroinformatics and Its Role in Flood Management , 2014 .
[40] Yann Richet,et al. Propagation des incertitudes dans les modèles hydrauliques 1D , 2015 .
[41] Vincent Guinot. Wave Propagation in Fluids: Models and Numerical Techniques , 2008 .
[42] M. B. Abbott,et al. SYSTEM 21, “JUPITER” (A DESIGN SYSTEM FOR TWO-DIMENSIONAL NEARLY-HORIZONTAL FLOWS) , 1973 .
[43] B Russo,et al. Methodologies to study the surface hydraulic behaviour of urban catchments during storm events. , 2011, Water science and technology : a journal of the International Association on Water Pollution Research.
[44] Stefano Tarantola,et al. Sensitivity analysis of spatial models , 2009, Int. J. Geogr. Inf. Sci..
[45] F. Nex,et al. UAV for 3D mapping applications: a review , 2014 .
[46] R. Barber,et al. TELEMAC: An efficient hydrodynamics suite for massively parallel architectures , 2011 .
[47] Paul D. Bates,et al. Optimal use of high‐resolution topographic data in flood inundation models , 2003 .
[48] Laurence Smith,et al. The role of expert opinion in environmental modelling , 2012, Environ. Model. Softw..
[49] Olivier Delestre,et al. SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies , 2011, 1110.0288.
[50] M. Abily,et al. Ruissellement de surface en milieu urbain : stratégies d’intégration de données topographiques haute résolution en modélisation hydraulique 2D , 2015 .
[51] Florian Pappenberger,et al. Multi-method global sensitivity analysis of flood inundation models. , 2008 .
[52] Kaiguang Zhao,et al. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues , 2010, Remote. Sens..
[53] Jean-Stéphane Bailly,et al. Analyse de sensibilité globale d'un modèle spatialisé pour l'évaluation économique du risque d'inondation , 2011 .
[54] A. Habib,et al. Photogrammetric and Lidar Data Registration Using Linear Features , 2005 .
[55] Jon C. Helton,et al. Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..
[56] C. Sampson,et al. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data , 2011 .
[57] Yoshihisa Kawahara,et al. The Uncertainty of Local Flow Parameters During Inundation Flow Over Complex Topographies with Elevation Errors , 2013 .
[58] Keith Beven,et al. Influence of uncertain boundary conditions and model structure on flood inundation predictions. , 2006 .
[59] B. Sanders. Evaluation of on-line DEMs for flood inundation modeling , 2007 .
[60] Stéphane Cordier,et al. FullSWOF: A software for overland flow simulation / FullSWOF : un logiciel pour la simulation du ruissellement , 2012, ArXiv.
[61] Peter F. Fisher,et al. Causes and consequences of error in digital elevation models , 2006 .
[62] Theo G. Schmitt,et al. DETAILED DIGITAL SURFACE MODEL ( DSM ) GENERATION AND AUTOMATIC OBJECT DETECTION TO FACILITATE MODELLING OF URBAN FLOODING , 2009 .
[63] Philippe Gourbesville,et al. Spatial Global Sensitivity Analysis of High Resolution classified topographic data use in 2D urban flood modelling , 2016, Environ. Model. Softw..
[64] Bertrand Iooss,et al. Global sensitivity analysis for models with spatially dependent outputs , 2009, 0911.1189.
[65] B. Iooss,et al. A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.
[66] Andreas Scheidegger,et al. Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas , 2015 .
[67] Xiaoye Liu,et al. Airborne LiDAR for DEM generation: some critical issues , 2008 .
[68] Philippe Gourbesville,et al. Performance assessment of modelling tools for high resolution runoff simulation over an industrial site , 2013 .
[69] John W. Fisher,et al. Automatic registration of LIDAR and optical images of urban scenes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.
[70] Frédéric Grelot,et al. Multi-scale spatial sensitivity analysis of a model for economic appraisal of flood risk management policies , 2014, Environ. Model. Softw..
[71] Patrick M. Reed,et al. Technical Note: Method of Morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models , 2013 .
[72] Florent Lafarge,et al. Building large urban environments from unstructured point data , 2011, 2011 International Conference on Computer Vision.
[73] Rainald Lhner. Applied Computational Fluid Dynamics Techniques , 2008 .
[74] V. Merwade,et al. Estimation of uncertainty propagation in flood inundation mapping using a 1‐D hydraulic model , 2015 .
[75] P. Bates,et al. Two dimensional finite element modelling of floodplain flow , 1999 .
[76] Steven J. Owen,et al. A Survey of Unstructured Mesh Generation Technology , 1998, IMR.
[77] Thomas D. M. Willis,et al. Systematic analysis of uncertainty in flood inundation modelling , 2014 .
[78] Weeratunge Malalasekera,et al. An introduction to computational fluid dynamics - the finite volume method , 2007 .
[79] Marie-Odile Bristeau,et al. Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes , 2001 .
[80] Robert M. Kirby,et al. Parallel Scientific Computing in C++ and MPI , 2003 .
[81] J. Hervouet. Hydrodynamics of Free Surface Flows , 2007 .
[82] Jean-Stéphane Bailly,et al. Very-high-resolution mapping of river-immersed topography by remote sensing , 2008 .
[83] Rainald Löhner,et al. Automatic unstructured grid generators , 1997 .
[84] J. Cunge,et al. Practical aspects of computational river hydraulics , 1980 .
[85] Wilfried Linder,et al. Digital Photogrammetry: A Practical Course , 2016 .
[86] Fabio Remondino,et al. UAV PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING - CURRENT STATUS AND FUTURE PERSPECTIVES - , 2012 .
[87] Ad McCowan,et al. Improving the Performance of a Two-dimensional Hydraulic Model for Floodplain Applications , 2001 .
[88] H. Rusche. Computational fluid dynamics of dispersed two-phase flows at high phase fractions , 2003 .
[89] C. Song,et al. Urban 3D GIS From LiDAR and digital aerial images , 2004, Comput. Geosci..
[90] F. Dottori,et al. Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling , 2013 .
[91] Roger Moussa,et al. Approximation zones of the Saint-Venant equations f flood routing with overbank flow , 2000 .
[92] F. Holly,et al. INVALIDITY OF PREISSMANN SCHEME FOR TRANSCRITICAL FLOW , 1997 .
[93] Jean A. Cunge,et al. Of data and models , 2003 .
[94] T. Sturm,et al. Open Channel Hydraulics , 2001 .
[95] F. Menter. Zonal Two Equation Kappa-Omega Turbulence Models for Aerodynamic Flows , 1993 .
[96] D. Fernández,et al. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis , 2010 .
[97] Jing Li,et al. Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas , 2009 .
[98] Claire-Marie Duluc,et al. Un nouveau guide sur la protection des installations nucléaires contre l'inondation d'origine externe , 2014 .
[99] Philippe Gourbesville,et al. HIGH RESOLUTION DIGITAL ELEVATION MODELS: A MAJOR INTEREST FOR URBAN FLOODING MANAGEMENT , 2004 .
[100] Olivier Delestre,et al. A limitation of the hydrostatic reconstruction technique for Shallow Water equations , 2012 .
[101] Philippe Gourbesville,et al. Calibration of physically based models: back to basics? , 2003 .
[102] N. Weatherill. Delaunay triangulation in computational fluid dynamics , 1992 .
[103] Jean A. Cunge. What Do We Model? What Results Do We Get? An Anatomy of Modelling Systems Foundations , 2014 .
[104] F. Pappenberger,et al. Ignorance is bliss: Or seven reasons not to use uncertainty analysis , 2006 .
[105] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[106] Xavier Briottet,et al. Very high resolution land cover extraction in urban areas , 2013 .
[107] Daniel G. Aliaga,et al. A Survey of Urban Reconstruction , 2013, Comput. Graph. Forum.
[108] V. Guinot,et al. Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations , 2012, Reliab. Eng. Syst. Saf..
[109] Hélène Coullon,et al. Comparison and Validation of Two Parallelization Approaches of FullSWOF_2D Software on a Real Case , 2016 .
[110] Roger Alexander Falconer,et al. A boundary-fitted numerical model for flood routing with shock capturing , 2007 .
[111] Norbert Pfeifer,et al. Optimisation of LiDAR derived terrain models for river flow modelling , 2008 .
[112] R. Tsubaki,et al. Relation Unstructured grid generation using LiDAR data for urban flood inundation modeling , 2022 .
[113] Robert L. Meakin. Adaptive spatial partitioning and refinement for overset structured grids , 2000 .
[114] Wilfried Linder,et al. Digital Photogrammetry , 2003 .
[115] C. Strecha,et al. The Accuracy of Automatic Photogrammetric Techniques on Ultra-light UAV Imagery , 2012 .
[116] Paul D. Bates,et al. Distributed Sensitivity Analysis of Flood Inundation Model Calibration , 2005 .
[117] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[118] S. Djordjević,et al. Potential and limitations of 1D modelling of urban flooding , 2004 .
[119] Bertrand Iooss. Revue sur l’analyse de sensibilité globale de modèles numériques , 2011 .
[120] Qihao Weng,et al. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends , 2012 .
[121] W. Walker,et al. Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .
[122] Philippe Gourbesville,et al. Use of Standard 2D Numerical Modeling Tools to Simulate Surface Runoff Over an Industrial Site: Feasibility and Comparative Performance Survey Over a Test Case , 2014 .
[123] G. Priestnalla,et al. Extracting urban features from LiDAR digital surface models , 2022 .
[124] S. Owen,et al. H-Morph: an indirect approach to advancing front hex meshing , 1999 .
[125] Stefania Angela Ciliberti,et al. 2D analysis for local flooding assessment in a new square of Barcelona during storm events , 2008 .