All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable

All first-order averaging or gradient-recovery operators for lowest-order finite element methods are shown to allow for an efficient a posteriori error estimation in an isotropic, elliptic model problem in a bounded Lipschitz domain Ω in R d . Given a piecewise constant discrete flux p h E P h (that is the gradient of a discrete displacement) as an approximation to the unknown exact flux p (that is the gradient of the exact displacement), recent results verify efficiency and reliability of ηM:= min{∥p h - q h ∥ L 2 (Ω) : q h ∈ Qh} in the sense that η M is a lower and upper bound of the flux error ∥p - p h ∥ L 2 (Ω) up to multiplicative constants and higher-order terms. The averaging space Q h consists of piecewise polynomial and globally continuous finite element functions in d components with carefully designed boundary conditions. The minimal value η M is frequently replaced by some averaging operator A: P h → Q h applied within a simple post-processing to p h . The result q h := Ap h E Q h provides a reliable error bound with η M < η A := ∥p h - Ap h ∥ L 2 (Ω) . This paper establishes η A < C eff η M and so equivalence of η M and η A . This implies efficiency of η A for a large class of patchwise averaging techniques which includes the ZZ-gradient-recovery technique. The bound C eff < 3.88 established for tetrahedral P 1 finite elements appears striking in that the shape of the elements does not enter: The equivalence η A η M is robust with respect to anisotropic meshes. The main arguments in the proof are Ascoli's lemma, a strengthened Cauchy inequality, and elementary calculations with mass matrices.

[1]  D. Braess Enhanced assumed strain elements and locking in membrane problems , 1998 .

[2]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[3]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[4]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  Ricardo H. Nochetto,et al.  Removing the saturation assumption in a posteriori error analysis , 1993 .

[7]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[8]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[9]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[10]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[11]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[12]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[13]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[14]  Rodolfo Rodríguez A Posteriori Error Analysis in the Finite Element Method , 1994 .

[15]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part II: λ-independent estimates , 2001 .

[16]  Carsten Carstensen,et al.  Averaging technique for a posteriori error control in elasticity. Part III: Locking-free nonconforming FEM , 2001 .

[17]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[18]  Carsten Carstensen,et al.  Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening , 2003 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[20]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[21]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[22]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[23]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[24]  Carsten Carstensen,et al.  A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..