Ergodicity of Stochastic Curve Shortening Flow in the Plane

We study a model of the motion by mean curvature of an (1+1) dimensional interface in a 2D Brownian velocity field. For the well-posedness of the model we prove existence and uniqueness for certain degenerate nonlinear stochastic evolution equations in the variational framework of Krylov Rozovskii, replacing the standard coercivity assumption by a Lyapunov type condition. Ergodicity is established for the case of additive noise, using the lower bound technique for Markov semigroups by Komorowski, Peszat and Szarek

[1]  Tadahisa Funaki,et al.  The scaling limit for a stochastic PDE and the separation of phases , 1995 .

[2]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[3]  Tomasz Szarek,et al.  On ergodicity of some Markov processes , 2008, 0810.4609.

[4]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[5]  Nicolas Dirr,et al.  Evolution by mean curvature in sub-Riemannian geometries: A stochastic approach , 2008 .

[6]  Nung Kwan Yip,et al.  Stochastic Motion by Mean Curvature , 1998 .

[7]  Rainer Buckdahn,et al.  Pathwise stochastic Taylor expansions and stochastic viscosity solutions for fully nonlinear stochastic PDEs , 2002 .

[8]  M. Metivier,et al.  Weak convergence of sequences of semimartingales with applications to multitype branching processes , 1986, Advances in Applied Probability.

[9]  Hendrik Weber,et al.  Tightness for a stochastic Allen–Cahn equation , 2009, 0911.5706.

[10]  Nicolas Dirr,et al.  Evolution by mean curvature flow in sub-Riemannian geometries:A stochastic approach , 2009 .

[11]  Takao Ohta,et al.  Kinetic Drumhead Model of Interface. I , 1982 .

[12]  M. Caruana,et al.  A (ROUGH) PATHWISE APPROACH TO FULLY NON-LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2009 .

[13]  Masaharu Taniguchi,et al.  The condition on the stability of stationary lines in a curvature flow in the whole plane , 2007 .

[14]  Robert V. Kohn,et al.  Action minimization and sharp‐interface limits for the stochastic Allen‐Cahn equation , 2007 .

[15]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[16]  Aurel Rùascanu Deterministic and Stochastic Differential Equations in Hilbert Spaces Involving Multivalued Maximal Monotone Operators , 2014 .

[17]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[18]  K. Kadlec,et al.  Stochastic Evolution Equations , 2013 .

[19]  Panagiotis E. Souganidis,et al.  Uniqueness of motion by mean curvature perturbed by stochastic noise , 2004 .

[20]  Hendrik Weber,et al.  Sharp interface limit for invariant measures of a stochastic Allen‐Cahn equation , 2009, 0908.2717.

[21]  Matteo Novaga,et al.  A stochastic selection principle in case of fattening for curvature flow , 2001 .

[22]  Peter K. Friz,et al.  A (rough) pathwise approach to a class of non-linear stochastic partial differential equations , 2011 .

[23]  E. Pardoux,et al.  Équations aux dérivées partielles stochastiques de type monotone , 1975 .

[24]  P. Souganidis,et al.  Fully nonlinear stochastic partial differential equations: non-smooth equations and applications , 1998 .

[25]  Xi-Ping Zhu,et al.  Lectures on Mean Curvature Flows , 2002 .

[26]  Panagiotis E. Souganidis,et al.  Fully nonlinear stochastic PDE with semilinear stochastic dependence , 2000 .