Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype

[1]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[2]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[3]  R. Dingledine,et al.  Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. , 1999, Science.

[4]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[5]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[6]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[7]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[8]  C. Garner,et al.  Caldendrin, a Novel Neuronal Calcium-binding Protein Confined to the Somato-dendritic Compartment* , 1998, The Journal of Biological Chemistry.

[9]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[10]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[11]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[12]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[13]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[14]  D. Johnston,et al.  Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. , 1998, Annual review of physiology.

[15]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[16]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[17]  M. Häusser,et al.  Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration , 1997, Neuron.

[18]  S. Cull-Candy,et al.  Single-Channel Properties of Recombinant AMPA Receptors Depend on RNA Editing, Splice Variation, and Subunit Composition , 1997, The Journal of Neuroscience.

[19]  A. Macdermott,et al.  Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors , 1996, Nature.

[20]  T. Yamakura,et al.  The sensitivity of AMPA‐selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the α2 subunit , 1995, FEBS letters.

[21]  M. Mayer,et al.  Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block , 1995, Neuron.

[22]  Sunjeev K Kamboj,et al.  Intracellular spermine confers rectification on rat calcium‐permeable AMPA and kainate receptors. , 1995, The Journal of physiology.

[23]  P. Jonas,et al.  Block of native Ca(2+)‐permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. , 1995, The Journal of physiology.

[24]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[25]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[26]  A. Konnerth,et al.  A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[28]  S. Nakanishi,et al.  Sequence and expression of a metabotropic glutamate receptor , 1991, Nature.

[29]  B. Clark,et al.  Frequency-dependent activation of NMDA receptors at an 'AMPA receptor only' synapse in the rat cerebellum , 1999 .

[30]  D. Feldmeyer,et al.  Neurological dysfunctions in mice expressing different levels of the Q/R site–unedited AMPAR subunit GluR–B , 1999, Nature Neuroscience.