Acceleration of the Multiple-Try Metropolis algorithm using antithetic and stratified sampling

The Multiple-Try Metropolis is a recent extension of the Metropolis algorithm in which the next state of the chain is selected among a set of proposals. We propose a modification of the Multiple-Try Metropolis algorithm which allows for the use of correlated proposals, particularly antithetic and stratified proposals. The method is particularly useful for random walk Metropolis in high dimensional spaces and can be used easily when the proposal distribution is Gaussian. We explore the use of quasi Monte Carlo (QMC) methods to generate highly stratified samples. A series of examples is presented to evaluate the potential of the method.

[1]  Art B Owen,et al.  A quasi-Monte Carlo Metropolis algorithm. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[3]  Radu V. Craiu,et al.  Multiprocess parallel antithetic coupling for backward and forward Markov Chain Monte Carlo , 2005, math/0505631.

[4]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[5]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[6]  Xiao-Li Meng,et al.  Multi-process Parallel Antithetic Coupling For Backward and Forward Markov Chain Monte Carlo ∗ , 2000 .

[7]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[8]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[9]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[10]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[11]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[12]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  François Perron,et al.  Improving on the Independent Metropolis-Hastings algorithm , 2005 .

[14]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[15]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[16]  R. Gunst Regression analysis and its application , 1980 .

[17]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[18]  Jørund Gåsemyr,et al.  Antithetic coupling of two Gibbs sampler chains , 2000 .

[19]  Zhiqiang Tan,et al.  Monte Carlo Integration With Acceptance-Rejection , 2006 .

[20]  Christiane Lemieux,et al.  Exact sampling with highly uniform point sets , 2006, Math. Comput. Model..

[21]  B. Schmeiser,et al.  Performance of the Gibbs, Hit-and-Run, and Metropolis Samplers , 1993 .

[22]  G. Marsaglia RANDOM VARIABLES AND COMPUTERS , 1962 .

[23]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[24]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[25]  Xiao-Li Meng,et al.  A Note on Bivariate Distributions That are Conditionally Normal , 1991 .

[26]  Wei-Liem Loh On Latin hypercube sampling , 1996 .

[27]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[28]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[29]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[30]  Art B. Owen,et al.  Quasi-Monte Carlo Sampling by , 2003, SIGGRAPH 2003.

[31]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[32]  C. I. Bliss THE CALCULATION OF THE DOSAGE-MORTALITY CURVE , 1935 .