In vivo visualization of living flatworm neurons using Lucifer yellow intracellular injections

Turbellarian flatworms lend themselves to neurobiological investigations using intracellular iontophoresis of Lucifer yellow provided that one is able to anesthetize the animal and expose the nervous system. This paper details the methods used with the polyclad Notoplana acticola and the rhabdocoel Mesostoma ehrenbergii. Marine turbellarians can be anesthetized with equal parts of sea water and isotonic MgCl2 and fresh-water animals with an 8% ethanol in spring water. Animals can be held steady with minuten pins and spines of the cactus Opuntia basilaris or O. littoralis. Sheaths surrounding the brain can be digested away with a protease. Conventional glass microelectrode techniques are used to fill the cells with fluorescent dye, Lucifer yellow. The preparation needs to be viewed using darkfield illumination. Cells can be photographed through the microscope or traced using a camera lucida attachment to a fluorescence microscope. Tracings tend to be more useful for preserving details of the three-dimensional nature of the neuronal cytoarchitecture.

[1]  C. Keenan,et al.  Cytoarchitecture of primitive brains: Golgi studies in flatworms , 1981, The Journal of comparative neurology.

[2]  Comparison of the nervous system of the rhabdocoel Mesostoma ehrenbergii with that of the polyclad Notoplana acticola , 1995 .

[3]  Bertil Hanström über DEN FEINEREN BAU DES NERVENSYSTEMS DER TRICLADEN TURBELLARIEN AUF GRUND VON UNTERSUCHUNGEN AN BDELLOURA CANDIDA , 1926 .

[4]  H. Koopowitz,et al.  Polyclad Neurobiology and the Evolution of Central Nervous Systems , 1989 .

[5]  P. A. Anderson,et al.  Evolution of the First Nervous Systems , 1989, NATO ASI Series.

[6]  H. Koopowitz,et al.  Neuroanatomy of the rhabdocoel flatworm Mesostoma ehrenbergii (focke, 1836). I. Neuronal diversity in the brain , 1994, The Journal of comparative neurology.

[7]  C. Pantin Notes on Microscopical Technique for Zoologists , 1959 .

[8]  H. Koopowitz,et al.  Tetrodotoxin‐Sensitive action potentials from the brain of the polyclad flatworm, Notoplana acticola , 1981 .

[9]  L. Hyman,et al.  The Invertebrates, Vol. II: Platyhelminthes and Rhynchocoela , 1951 .

[10]  P. Calow,et al.  Invertebrates: a new synthesis. , 1988 .

[11]  G. Horridge,et al.  Structure and function in the nervous systems of invertebrates , 1965 .

[12]  W. W. Stewart,et al.  Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer , 1978, Cell.

[13]  K. L. Blair,et al.  PROPERTIES OF 185TAGE-ACTIVATED IONIC CURRENTS IN CELLS FROM THE BRAINS OF THE TRICLAD FLATWORM BDELLOURA CANDIDA , 1993 .

[14]  B. Granzow,et al.  Mapping of neuronal contacts with intracellular injection of horseradish peroxidase and Lucifer yellow in combination , 1981, Brain Research.