Efficient parameter estimation via modified Cholesky decomposition for quantile regression with longitudinal data

It is well known that specifying a covariance matrix is difficult in the quantile regression with longitudinal data. This paper develops a two step estimation procedure to improve estimation efficiency based on the modified Cholesky decomposition. Specifically, in the first step, we obtain the initial estimators of regression coefficients by ignoring the possible correlations between repeated measures. Then, we apply the modified Cholesky decomposition to construct the covariance models and obtain the estimator of within-subject covariance matrix. In the second step, we construct unbiased estimating functions to obtain more efficient estimators of regression coefficients. However, the proposed estimating functions are discrete and non-convex. We utilize the induced smoothing method to achieve the fast and accurate estimates of parameters and their asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distributions for the resulting estimators. Simulation studies and the longitudinal progesterone data analysis show that the proposed approach yields highly efficient estimators.

[1]  Guodong Li,et al.  Varying-coefficient mean–covariance regression analysis for longitudinal data , 2015 .

[2]  Chenlei Leng,et al.  Empirical likelihood and quantile regression in longitudinal data analysis , 2011 .

[3]  B. M. Brown,et al.  Standard errors and covariance matrices for smoothed rank estimators , 2005 .

[4]  Weiping Zhang,et al.  Smoothing combined estimating equations in quantile regression for longitudinal data , 2014, Stat. Comput..

[5]  Xiaoming Lu,et al.  Weighted quantile regression for longitudinal data , 2015, Comput. Stat..

[6]  Min Zhu,et al.  Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis , 2005, Biometrics.

[7]  Liya Fu,et al.  Quantile regression for longitudinal data with a working correlation model , 2012, Comput. Stat. Data Anal..

[8]  W. Fung,et al.  Median regression for longitudinal data , 2003, Statistics in medicine.

[9]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[10]  Peirong Xu,et al.  Estimation for a marginal generalized single-index longitudinal model , 2012, J. Multivar. Anal..

[11]  Zhongyi Zhu,et al.  Joint mean–covariance model in generalized partially linear varying coefficient models for longitudinal data , 2016 .

[12]  Sin-Ho Jung Quasi-Likelihood for Median Regression Models , 1996 .

[13]  Jianqing Fan,et al.  Efficient Estimation of Conditional Variance Functions in Stochastic Regression , 1998 .

[14]  Chenlei Leng,et al.  Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data , 2009 .

[15]  Liya Fu,et al.  A Gaussian pseudolikelihood approach for quantile regression with repeated measurements , 2015, Comput. Stat. Data Anal..

[16]  Runze Li,et al.  New local estimation procedure for a non‐parametric regression function for longitudinal data , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[17]  Gaorong Li,et al.  Modified SEE variable selection for varying coefficient instrumental variable models , 2013 .

[18]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[19]  R. Koenker Quantile regression for longitudinal data , 2004 .

[20]  Liya Fu,et al.  Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data , 2016, J. Multivar. Anal..

[21]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[22]  Weiping Zhang,et al.  A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data , 2013 .

[23]  Xueying Zheng,et al.  Robust estimation in joint mean–covariance regression model for longitudinal data , 2013 .

[24]  Ying Wei,et al.  A DYNAMIC QUANTILE REGRESSION TRANSFORMATION MODEL FOR LONGITUDINAL DATA , 2009 .

[25]  Chenlei Leng,et al.  A moving average Cholesky factor model in covariance modelling for longitudinal data , 2012 .

[26]  W. Fung,et al.  VARIABLE SELECTION IN ROBUST JOINT MEAN AND COVARIANCE MODEL FOR LONGITUDINAL DATA ANALYSIS , 2014 .

[27]  Yanlin Tang,et al.  Improving estimation efficiency in quantile regression with longitudinal data , 2015 .

[28]  Zhong Yi Zhu,et al.  Joint estimation of mean-covariance model for longitudinal data with basis function approximations , 2011, Comput. Stat. Data Anal..

[29]  Heng Lian,et al.  Generalized additive partial linear models for clustered data with diverging number of covariates using gee , 2014 .

[30]  Min Zhu,et al.  Efficient parameter estimation in longitudinal data analysis using a hybrid GEE method. , 2009, Biostatistics.

[31]  Jianxin Pan,et al.  Modelling of covariance structures in generalised estimating equations for longitudinal data , 2006 .

[32]  Lan Wang,et al.  GEE analysis of clustered binary data with diverging number of covariates , 2011, 1103.1795.