Trees, functional equations, and combinatorial Hopf algebras

One of the main virtues of trees is the representation of formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combinatorial Hopf algebras, the simplest examples yield interesting algebraic identities or enumerative results.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Michelle L. Wachs,et al.  q-Hook length formulas for forests , 1989, J. Comb. Theory, Ser. A.

[3]  Seunghyun Seo A Combinatorial Proof of Postnikov's Identity and a Generalized Enumeration of Labeled Trees , 2005, Electron. J. Comb..

[4]  Fu Liu,et al.  (k, m)-Catalan numbers and hook length polynomials for plane trees , 2007, Eur. J. Comb..

[5]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[6]  Jean-Yves Thibon,et al.  Noncommutative symmetric functions and Lagrange inversion , 2008, Adv. Appl. Math..

[7]  Jean-Yves Thibon,et al.  The algebra of binary search trees , 2004, Theor. Comput. Sci..

[8]  F. Chapoton Algèbres de Hopf des permutahèdres, associahèdres et hypercubes , 2000 .

[9]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[10]  Dominique Foata,et al.  Major Index and Inversion Number of Permutations , 1978 .

[11]  J. Thibon,et al.  Construction de trigèbres dendriformes , 2006 .

[12]  A Hopf algebra of parking functions , 2003, math/0312126.

[13]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[14]  Michelle L. Wachs,et al.  Permutation statistics and linear extensions of posets , 1991, J. Comb. Theory, Ser. A.

[15]  Daniel Krob,et al.  Noncommutative Symmetric Functions II: Transformations of Alphabets , 1997, Int. J. Algebra Comput..

[16]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[17]  Gérard Duchamp,et al.  Noncommutative Symmetric Functions Vi: Free Quasi-Symmetric Functions and Related Algebras , 2002, Int. J. Algebra Comput..

[18]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[19]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[20]  Ira M. Gessel,et al.  A Refinement of Cayley's Formula for Trees , 2006, Electron. J. Comb..

[21]  Jean-Louis Loday,et al.  Trialgebras and families of polytopes , 2002 .

[22]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[23]  Jean-Louis Loday,et al.  Hopf Algebra of the Planar Binary Trees , 1998 .

[24]  William Y.C. Chen,et al.  On the Hook Length Formula for Binary Trees , 2005 .