Perfect codes in the lp metric

We investigate perfect codes in Z n in the ? p metric. Upper bounds for the packing radius r of a linear perfect code, in terms of the metric parameter p and the dimension n are derived. For p = 2 and n = 2 , 3 , we determine all radii for which there exist linear perfect codes. The non-existence results for codes in Z n presented here imply non-existence results for codes over finite alphabets Z q , when the alphabet size is large enough, and have implications on some recent constructions of spherical codes.

[1]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[2]  Mladen Kovacevic,et al.  Difference Sets and Codes in $ A_n $ Lattices , 2014, ArXiv.

[3]  q-ary lattices in the lp norm and a generalization of the Lee metric , 2013 .

[4]  Moshe Schwartz,et al.  On the non-existence of lattice tilings by quasi-crosses , 2012, 2013 Information Theory and Applications Workshop (ITA).

[5]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[6]  N. J. A. Sloane,et al.  An improvement to the Minkowski-Hiawka bound for packing superballs , 1987 .

[7]  Peter Horák,et al.  Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.

[8]  Patrick Solé,et al.  Constructive spherical codes near the Shannon bound , 2013, Des. Codes Cryptogr..

[9]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[10]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[11]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[12]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[13]  Sueli I. Rodrigues Costa,et al.  Codes and lattices in the lp metric , 2014, 2014 Information Theory and Applications Workshop (ITA).

[14]  Peter Horák,et al.  A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..

[15]  Sherman K. Stein,et al.  Algebra and Tiling by Sherman K. Stein , 2009 .

[16]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[17]  Moshe Schwartz,et al.  Quasi-Cross Lattice Tilings With Applications to Flash Memory , 2011, IEEE Transactions on Information Theory.

[18]  R. C. Vaughan,et al.  Waring ’ s Problem : A Survey , 2002 .

[19]  S. Golomb Polyominoes: Puzzles, Patterns, Problems, and Packings , 1994 .