Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.

Recent research has pushed the efficiency of colloidal quantum dot solar cells toward a level that spurs commercial interest. Quantum dot/metal oxide bilayers form the most efficient colloidal quantum dot solar cells, and most studies have advanced the understanding of the quantum dot component. We study the interfacial recombination process in depleted heterojunction colloidal quantum dot (QD) solar cells formed with ZnO as the oxide by varying (i) the carrier concentration of the ZnO layer and (ii) the density of intragap recombination sites in the QD layer. We find that the open-circuit voltage and efficiency of PbS QD/ZnO devices can be improved by 50% upon doping of the ZnO with nitrogen to reduce its carrier concentration. In contrast, doping the ZnO did not change the performance of PbSe QD/ZnO solar cells. We use X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, transient photovoltage decay measurements, transient absorption spectroscopy, and intensity-dependent photocurrent measurements to investigate the origin of this effect. We find a significant density of intragap states within the band gap of the PbS quantum dots. These states facilitate recombination at the PbS/ZnO interface, which can be suppressed by reducing the density of occupied states in the ZnO. For the PbSe QD/ZnO solar cells, where fewer intragap states are observed in the quantum dots, the interfacial recombination channel does not limit device performance. Our study sheds light on the mechanisms of interfacial recombination in colloidal quantum dot solar cells and emphasizes the influence of quantum dot intragap states and metal oxide properties on this loss pathway.

[1]  H. Assender,et al.  The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. , 2012, Nano letters.

[2]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[3]  Auke Jisk Kronemeijer,et al.  Probing Charge Carrier Density in a Layer of Photodoped ZnO Nanoparticles by Spectroscopic Ellipsometry , 2010 .

[4]  F. Wise,et al.  Control of electron transfer from lead-salt nanocrystals to TiO₂. , 2011, Nano letters.

[5]  A Paul Alivisatos,et al.  Photovoltaic devices employing ternary PbSxSe1-x nanocrystals. , 2009, Nano letters.

[6]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[7]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells (Adv. Mater. 35/2010) , 2010 .

[8]  S. Risbud,et al.  Synthesis, Optical Spectroscopy and Ultrafast Electron Dynamics of PbS Nanoparticles with Different Surface Capping , 2000 .

[9]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[10]  David P. Norton,et al.  Wide band gap ferromagnetic semiconductors and oxides , 2003 .

[11]  Jianbo Gao,et al.  Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell , 2010, Advanced materials.

[12]  A. Rogach,et al.  Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies , 2011 .

[13]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[14]  Hyungjun Kim,et al.  High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO , 2007 .

[15]  Ratan Debnath,et al.  Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells , 2012, Advanced materials.

[16]  G. Konstantatos,et al.  Ultrasensitive solution-cast quantum dot photodetectors , 2006, Nature.

[17]  Prashant Nagpal,et al.  Role of mid-gap states in charge transport and photoconductivity in semiconductor nanocrystal films , 2011, Nature communications.

[18]  A. Pal,et al.  Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals , 2011 .

[19]  Ghada I. Koleilat,et al.  Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells , 2011, Advanced materials.

[20]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[21]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[22]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[23]  V. Bulović,et al.  Interfacial Recombination for Fast Operation of a Planar Organic/QD Infrared Photodetector , 2010, Advanced materials.

[24]  J. Skarp,et al.  Atomic layer epitaxy growth of doped zinc oxide thin films from organometals , 1994 .

[25]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[26]  M. Johnston,et al.  The origin of an efficiency improving “light soaking” effect in SnO2 based solid-state dye-sensitized solar cells , 2012 .

[27]  D. Kabra,et al.  Charge‐Carrier Balance and Color Purity in Polyfluorene Polymer Blends for Blue Light‐Emitting Diodes , 2012 .

[28]  E. Sargent,et al.  Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation , 2009, Science.

[29]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[30]  Cheol Seong Hwang,et al.  Al‐Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors , 2008 .

[31]  S. Nelson,et al.  Oxide Electronics by Spatial Atomic Layer Deposition , 2009, Journal of Display Technology.

[32]  J. MacManus‐Driscoll,et al.  Reproducible growth of p-type ZnO:N using a modified atomic layer deposition process combined with dark annealing , 2008 .

[33]  W. E. Meyer,et al.  Fabrication and characterisation of NiO/ZnO structures , 2004 .

[34]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[35]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[36]  A. Majumdar,et al.  Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. , 2008, Nano letters.

[37]  M. Ritala,et al.  Atomic layer deposition of TiO2−xNx thin films for photocatalytic applications , 2006 .

[38]  Jianbo Gao,et al.  Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. , 2011, Nano letters.

[39]  M. Izaki,et al.  Transparent zinc oxide films prepared by electrochemical reaction , 1996 .

[40]  Shelby Forrester Nelson,et al.  Stable ZnO thin film transistors by fast open air atomic layer deposition , 2008 .

[41]  Mark W. B. Wilson,et al.  In situ measurement of exciton energy in hybrid singlet-fission solar cells , 2012, Nature Communications.

[42]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[43]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[44]  Mark W. B. Wilson,et al.  Singlet exciton fission-sensitized infrared quantum dot solar cells. , 2012, Nano letters.

[45]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[46]  Norbert Koch,et al.  Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films , 2003 .

[47]  Yujia Zeng,et al.  Carrier concentration dependence of band gap shift in n-type ZnO:Al films , 2007 .

[48]  Lukasz Brzozowski,et al.  Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. , 2012, ACS nano.

[49]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[50]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[51]  V. Bulović,et al.  Colloidal PbS quantum dot solar cells with high fill factor. , 2010, ACS nano.

[52]  Philippe Guyot-Sionnest,et al.  n-Type Conducting CdSe Nanocrystal Solids , 2003, Science.

[53]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[54]  Ratan Debnath,et al.  Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics , 2011, Advanced materials.