GeoBurst+

The real-time discovery of local events (e.g., protests, disasters) has been widely recognized as a fundamental socioeconomic task. Recent studies have demonstrated that the geo-tagged tweet stream serves as an unprecedentedly valuable source for local event detection. Nevertheless, how to effectively extract local events from massive geo-tagged tweet streams in real time remains challenging. To bridge the gap, we propose a method for effective and real-time local event detection from geo-tagged tweet streams. Our method, named GeoBurst+, first leverages a novel cross-modal authority measure to identify several pivots in the query window. Such pivots reveal different geo-topical activities and naturally attract similar tweets to form candidate events. GeoBurst+ further summarizes the continuous stream and compares the candidates against the historical summaries to pinpoint truly interesting local events. Better still, as the query window shifts, GeoBurst+ is capable of updating the event list with little time cost, thus achieving continuous monitoring of the stream. We used crowdsourcing to evaluate GeoBurst+ on two million-scale datasets and found it significantly more effective than existing methods while being orders of magnitude faster.

[1]  T. Murata,et al.  Breaking News Detection and Tracking in Twitter , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[2]  Hector Garcia-Molina,et al.  Overview of multidatabase transaction management , 2005, The VLDB Journal.

[3]  Philip S. Yu,et al.  Parameter Free Bursty Events Detection in Text Streams , 2005, VLDB.

[4]  Ee-Peng Lim,et al.  Analyzing feature trajectories for event detection , 2007, SIGIR.

[5]  Nick Koudas,et al.  TwitterMonitor: trend detection over the twitter stream , 2010, SIGMOD Conference.

[6]  Alexander J. Smola,et al.  Discovering geographical topics in the twitter stream , 2012, WWW.

[7]  Ling Chen,et al.  Event detection from flickr data through wavelet-based spatial analysis , 2009, CIKM.

[8]  Chang-Tien Lu,et al.  EMBERS at 4 years: Experiences operating an Open Source Indicators Forecasting System , 2016, KDD.

[9]  Jieping Ye,et al.  Multi-Task Learning for Spatio-Temporal Event Forecasting , 2015, KDD.

[10]  Jiawei Han,et al.  Geographical topic discovery and comparison , 2011, WWW.

[11]  Charu C. Aggarwal,et al.  Event Detection in Social Streams , 2012, SDM.

[12]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[13]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[14]  Jieping Ye,et al.  Hierarchical Incomplete Multi-source Feature Learning for Spatiotemporal Event Forecasting , 2016, KDD.

[15]  Hanan Samet,et al.  TwitterStand: news in tweets , 2009, GIS.

[16]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[17]  Sergej Sizov,et al.  GeoFolk: latent spatial semantics in web 2.0 social media , 2010, WSDM '10.

[18]  Rui Li,et al.  TEDAS: A Twitter-based Event Detection and Analysis System , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[19]  Ashish Goel,et al.  Personalized PageRank to a Target Node , 2013, ArXiv.

[20]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Son Doan,et al.  An analysis of Twitter messages in the 2011 Tohoku Earthquake , 2011, eHealth.

[22]  Wei Zhang,et al.  STREAMCUBE: Hierarchical spatio-temporal hashtag clustering for event exploration over the Twitter stream , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[23]  Shaowen Wang,et al.  GeoBurst: Real-Time Local Event Detection in Geo-Tagged Tweet Streams , 2016, SIGIR.

[24]  Vanja Josifovski,et al.  Learning to Extract Local Events from the Web , 2015, SIGIR.

[25]  Chenliang Li,et al.  Twevent: segment-based event detection from tweets , 2012, CIKM.

[26]  Steffen Staab,et al.  Detecting non-gaussian geographical topics in tagged photo collections , 2014, WSDM.

[27]  Anthony K. H. Tung,et al.  Trendspedia: An Internet observatory for analyzing and visualizing the evolving web , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[28]  Bu-Sung Lee,et al.  Event Detection in Twitter , 2011, ICWSM.

[29]  Lidan Shou,et al.  Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories , 2014, Proc. VLDB Endow..

[30]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[31]  Zhiguo Gong,et al.  A Nonparametric Model for Event Discovery in the Geospatial-Temporal Space , 2016, CIKM.

[32]  Kazufumi Watanabe,et al.  Jasmine: a real-time local-event detection system based on geolocation information propagated to microblogs , 2011, CIKM '11.

[33]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[34]  Jiawei Han,et al.  Fast Inbound Top-K Query for Random Walk with Restart , 2015, ECML/PKDD.

[35]  Quoc V. Le,et al.  Distributed Representations of Sentences and Documents , 2014, ICML.

[36]  Michael Gertz,et al.  EvenTweet: Online Localized Event Detection from Twitter , 2013, Proc. VLDB Endow..

[37]  Mauricio Quezada,et al.  Location-Aware Model for News Events in Social Media , 2015, SIGIR.

[38]  Luming Zhang,et al.  GMove: Group-Level Mobility Modeling Using Geo-Tagged Social Media , 2016, KDD.

[39]  Brendan T. O'Connor,et al.  Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments , 2010, ACL.

[40]  Nadia Magnenat-Thalmann,et al.  Who, where, when and what: discover spatio-temporal topics for twitter users , 2013, KDD.

[41]  Wei Zhang,et al.  PRED: Periodic Region Detection for Mobility Modeling of Social Media Users , 2017, WSDM.

[42]  James Allan,et al.  On-Line New Event Detection and Tracking , 1998, SIGIR.

[43]  Shaowen Wang,et al.  Regions, Periods, Activities: Uncovering Urban Dynamics via Cross-Modal Representation Learning , 2017, WWW.

[44]  Licia Capra,et al.  Urban Computing: Concepts, Methodologies, and Applications , 2014, TIST.

[45]  Liang Zhao,et al.  Multi-resolution Spatial Event Forecasting in Social Media , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[46]  Eric Horvitz,et al.  Eyewitness: identifying local events via space-time signals in twitter feeds , 2015, SIGSPATIAL/GIS.