Non-uniform magnetization reversal in nanocomposite magnets

Magnetization reversal and exchange coupling are investigated in Pr-Fe-B melt-spun ribbons. In nanocomposite magnets, not only does the coercivity decrease but also magnetization reversal becomes more non-uniform in hard grains. The non-uniform magnetization reversal, resulting in a deterioration of squareness in hysteresis loop and a drop of the maximum Henkel plot value, mainly is caused by random arrangement of easy axes and intergranular soft regions among hard grains even with well exchange coupling between soft-hard grains in these ribbons. It is expected that the uniformity in magnetization reversal could be improved with the perfection of easy axes alignment in anisotropy nanocomposites.

[1]  B. Shen,et al.  Origin of recoil hysteresis in nanocomposite Pr8Fe87B5 magnets , 2013 .

[2]  J. Liu,et al.  Effect of magnetic fields on melt-spun Nd2Fe14B-based ribbons , 2012 .

[3]  Shuai Guo,et al.  The microstructure and magnetization behaviors of (Pr8.2Fe86.1−xCoxB5.7)0.99Zr0.01 (x = 0–10) nanocomposite magnets , 2011 .

[4]  Nicola Jones,et al.  Materials science: The pull of stronger magnets , 2011, Nature.

[5]  J. Pearson,et al.  Origin of recoil hysteresis loops in Sm-Co/Fe exchange-spring magnets. , 2007 .

[6]  C. Yang,et al.  Self-pinning: Dominant coercivity mechanism in exchange-coupled permanent/composite magnets , 2007 .

[7]  B. Shen,et al.  The role of dipolar interaction in nanocomposite permanent magnets , 2006 .

[8]  R. Gopalan,et al.  Sm(Co,Cu)/sub 5//Fe exchange spring multilayer films with high energy product , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[9]  J. Shield,et al.  The effect of transition metal additions on the microstructure and properties of nanocomposite Pr-Fe-B permanent magnets , 2004, IEEE Transactions on Magnetics.

[10]  G. Hadjipanayis,et al.  Die-upset hybrid Pr–Fe–B nanocomposite magnets , 2004 .

[11]  Baoyi Wang,et al.  Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials , 2003 .

[12]  B. Shen,et al.  Investigation on intergrain exchange coupling of nanocrystalline permanent magnets by Henkel plot , 2003 .

[13]  D. Sellmyer,et al.  Exchange Coupling and Remanence Enhancement in Nanocomposite Multilayer Magnets , 2002 .

[14]  Hao Zeng,et al.  Exchange-coupled nanocomposite magnets by nanoparticle self-assembly , 2002, Nature.

[15]  H. L. Wang,et al.  Microstructure refinement and significant improvements of magnetic properties in Pr2Fe14B/α-Fe nanocomposites , 2002 .

[16]  Xuwu Zhang,et al.  Study of interface structure of α-Fe/Nd2Fe14B nanocomposite magnets , 2002 .

[17]  J. Tucker,et al.  Computer simulation of the effect of an ultra soft phase on the magnetic properties of nanocrystalline permanent magnets , 2001 .

[18]  H. Fukunaga,et al.  Micromagnetic approach for relationship between nanostructure and magnetic properties of nanocomposite magnets , 2001 .

[19]  H. Kubota,et al.  Magnetic properties of c-axis oriented SmFe12/α-Fe nanocomposite films , 2000 .

[20]  Dagmar Goll,et al.  Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets , 1998 .

[21]  J. Bauer,et al.  Nanocrystalline FeNdB permanent magnets with enhanced remanence , 1996 .

[22]  Kronmüller,et al.  Remanence and coercivity in isotropic nanocrystalline permanent magnets. , 1994, Physical review. B, Condensed matter.

[23]  J. Coey,et al.  Giant energy product in nanostructured two-phase magnets. , 1993, Physical review. B, Condensed matter.

[24]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[25]  K. O’Grady,et al.  Switching mechanisms in cobalt phosphorus thin films , 1989, International Magnetics Conference.

[26]  O. Henkel Remanenzverhalten und Wechselwirkungen in hartmagnetischen Teilchenkollektiven , 1964, December 1.