Molecular and nanoscale compositional contrast of soft matter in liquid: interplay between elastic and dissipative interactions.

We demonstrate that the phase contrast observed with an amplitude modulation atomic force microscope depends on two factors, the generation of higher harmonics components and the energy dissipated on the sample surface. Those factors are ultimately related to the chemical composition and structure of the surface. Our findings are general, but they specifically describe the results obtained while imaging soft materials in liquid. Molecular resolution experiments performed on a protein membrane surface in liquid confirm the theory.

[1]  R. Proksch,et al.  Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy , 2012 .

[2]  E. Meyer,et al.  Atomic-scale dissipation processes in dynamic force spectroscopy , 2011 .

[3]  J. Font,et al.  How localized are energy dissipation processes in nanoscale interactions? , 2011, Nanotechnology.

[4]  Chanmin Su,et al.  Mechanical mapping of single membrane proteins at submolecular resolution. , 2011, Nano letters.

[5]  F. Biscarini,et al.  Morphological and mechanical properties of alkanethiol Self-Assembled Monolayers investigated via BiModal Atomic Force Microscopy. , 2011, Chemical communications.

[6]  M. Thelakkat,et al.  Subsurface Mapping of Amorphous Surface Layers on Poly(3-hexylthiophene) , 2011 .

[7]  A. R. Taylor,et al.  Subcellular features revealed on unfixed rat brain sections by phase imaging. , 2011, The Analyst.

[8]  Christian Dietz,et al.  Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid , 2011, Nanotechnology.

[9]  Wei Zhang,et al.  Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. , 2011, Physical review letters.

[10]  C. Riesch,et al.  Subsurface imaging of soft polymeric materials with nanoscale resolution. , 2011, ACS nano.

[11]  S. Buratto,et al.  Phase imaging of proton exchange membranes under attractive and repulsive tip-sample interaction forces. , 2011, The journal of physical chemistry. B.

[12]  N. Thomson,et al.  Energy dissipation in a dynamic nanoscale contact , 2011 .

[13]  Roger Proksch,et al.  Energy dissipation measurements in frequency-modulated scanning probe microscopy , 2010, Nanotechnology.

[14]  J. Cantrell,et al.  Phase image contrast mechanism in intermittent contact atomic force microscopy , 2010 .

[15]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[16]  Ricardo Garcia,et al.  Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. , 2010, Ultramicroscopy.

[17]  A Passian,et al.  New modes for subsurface atomic force microscopy through nanomechanical coupling. , 2010, Nature nanotechnology.

[18]  Arvind Raman,et al.  Accurate force spectroscopy in tapping mode atomic force microscopy in liquids , 2010 .

[19]  Ricardo Garcia,et al.  Molecular scale energy dissipation in oligothiophene monolayers measured by dynamic force microscopy , 2009, Nanotechnology.

[20]  S. Glotzer,et al.  The effect of nanometre-scale structure on interfacial energy. , 2009, Nature materials.

[21]  J. Hobbs,et al.  How atomic force microscopy has contributed to our understanding of polymer crystallization , 2009 .

[22]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[23]  M. Dong,et al.  Determination of protein structural flexibility by microsecond force spectroscopy. , 2009, Nature nanotechnology.

[24]  R. Proksch,et al.  Bimodal magnetic force microscopy: Separation of short and long range forces , 2009 .

[25]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[26]  R. Stark,et al.  Nanotomography with enhanced resolution using bimodal atomic force microscopy , 2008 .

[27]  A. Raman,et al.  Dynamics of tapping mode atomic force microscopy in liquids: Theory and experiments , 2007 .

[28]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[29]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[30]  Recep Avci,et al.  Analyses of Soft Tissue from Tyrannosaurus rex Suggest the Presence of Protein , 2007, Science.

[31]  Masayuki Abe,et al.  Chemical identification of individual surface atoms by atomic force microscopy , 2007, Nature.

[32]  A. Steele,et al.  HEPES-stabilized encapsulation of Salmonella typhimurium. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[33]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[34]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[35]  Ricardo Garcia,et al.  Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006, Nanotechnology.

[36]  V. Dravid,et al.  Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound Holography , 2005, Science.

[37]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[38]  J. Aimé,et al.  Experimental determination of conservative and dissipative parts in the tapping mode on a grafted layer: comparison with frequency modulation data , 2005 .

[39]  C. Fretigny,et al.  Depth sensing and dissipation in tapping mode atomic force microscopy , 2004 .

[40]  Martin Stark,et al.  Inverting dynamic force microscopy: From signals to time-resolved interaction forces , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[42]  D. Müller,et al.  From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. , 2001, Biophysical journal.

[43]  M. Whangbo,et al.  Importance of the indentation depth in tapping-mode atomic force microscopy study of compliant materials , 1999 .

[44]  J. Tamayo Energy dissipation in tapping-mode scanning force microscopy with low quality factors , 1999 .

[45]  Javier Tamayo,et al.  Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy , 1998 .

[46]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[47]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[48]  Soo‐Yeun Lee,et al.  Impact of storage on dark chocolate: texture and polymorphic changes. , 2011, Journal of food science.

[49]  Daniel J Müller,et al.  Atomic force microscopy and spectroscopy of native membrane proteins , 2007, Nature Protocols.

[50]  Sergei Magonov,et al.  AFM study of thermotropic structural transitions in poly(diethylsiloxane) , 1997 .