Empirical assessment of the critical time increment in explicit particulate discrete element method simulations

This contribution considers the critical time increment (Δtcrit) to achieve stable simulations using particulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. The Δtcrit is determined by considering the maximum vibration frequency of the system. Based on a series of parametric studies, Δtcrit is shown to depend on the particle mass (m), the maximum contact stiffness (Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating Δtcrit to m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios considered here, these can inform DEM analysts selecting appropriate Δtcrit values.

[1]  C. Thornton,et al.  Applications of Theoretical Contact Mechanics to Solid Particle System Simulation , 1988 .

[2]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[3]  K. Hanley,et al.  Fabric and Effective Stress Distribution in Internally Unstable Soils , 2014 .

[4]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[5]  C. Kloss,et al.  Models, algorithms and validation for opensource DEM and CFD-DEM , 2012 .

[6]  Xuxin Tu,et al.  Criteria for static equilibrium in particulate mechanics computations , 2008 .

[7]  C. O’Sullivan,et al.  Analytical study of the accuracy of discrete element simulations , 2017 .

[8]  Chung Yee Kwok,et al.  Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework , 2016 .

[9]  J. Barbera,et al.  Contact mechanics , 1999 .

[10]  D. Gonzalez,et al.  Numerical and experimental investigation into the behaviour of granular materials under generalised stress states , 2010 .

[11]  T. Shire Micro-scale modelling of granular filters , 2014 .

[12]  C. Thornton,et al.  The conditions for failure of a face-centered cubic array of uniform rigid spheres , 1979 .

[13]  M. Adams,et al.  Discrete particle-continuum fluid modelling of gas–solid fluidised beds , 2002 .

[14]  Martin Kremmer,et al.  A method for representing boundaries in discrete element modelling—part II: Kinematics , 2001 .

[15]  Shane J. Burns,et al.  Establishing stable time‐steps for DEM simulations of non‐collinear planar collisions with linear contact laws , 2017 .

[16]  K. Hanley,et al.  Influence of packing density and stress on the dynamic response of granular materials , 2017 .

[17]  Long Chen FINITE ELEMENT METHOD , 2013 .

[18]  M. Marigo,et al.  Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets , 2015 .

[19]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications , 2002 .

[20]  Kirk Fraser,et al.  International LS-DYNA Users Conference Session 047 1-1 Improving the Precision of Discrete Element Simulations through Calibration Models , 2014 .

[21]  Jennifer S. Curtis,et al.  Validation and time step determination of discrete element modeling of flexible fibers , 2013 .

[22]  Jonathan D. Bray,et al.  Modeling of Particulate Media Using Discontinuous Deformation Analysis , 1995 .

[23]  Josephine M. Boac,et al.  Applications of Discrete Element Method in Modeling of Grain Postharvest Operations , 2014, Food Engineering Reviews.

[24]  Kenichi Soga,et al.  Micromechanics-based stress-strain behaviour of soils at small strains , 2000 .

[25]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[26]  Josephine M. Boac,et al.  3-D and Quasi-2-D Discrete Element Modeling of Grain Commingling in a Bucket Elevator Boot System , 2012 .

[27]  N. Cristescu,et al.  On dynamic relaxation , 1967 .

[28]  Jean-Noël Roux,et al.  Rheophysics of dense granular materials: discrete simulation of plane shear flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Ronald L. Sack Matrix Structural Analysis , 1989 .

[30]  Kim André Larsen,et al.  Calibration of Failure Criteria for Bucket Foundations on Drained Sand under General Loading , 2014 .

[31]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[32]  C. Thornton,et al.  A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles , 2005 .

[33]  Kathrin Abendroth,et al.  Nonlinear Finite Elements For Continua And Structures , 2016 .

[34]  J. Bray,et al.  Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme , 2004 .

[35]  Runyu Yang,et al.  Discrete particle simulation of particulate systems: A review of major applications and findings , 2008 .

[36]  P. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART II. MECHANICAL CALCULATIONS FOR MOTION AND INTERACTION OF A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[37]  A. Yu,et al.  Discrete particle simulation of particulate systems: Theoretical developments , 2007 .

[38]  C. Thornton NUMERICAL SIMULATIONS OF DEVIATORIC SHEAR DEFORMATION OF GRANULAR MEDIA , 2000 .

[39]  C. O’Sullivan Particulate Discrete Element Modelling: A Geomechanics Perspective , 2011 .

[40]  C. O’Sullivan,et al.  Constriction size distributions of granular filters: a numerical study , 2016 .