On the augmented Lagrangian dual for integer programming

We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a fixed, large value and still obtain strong duality for pure integer programs.

[1]  Ellis L. Johnson Cyclic Groups, Cutting Planes, Shortest Paths , 1973 .

[2]  Michael R. Bussieck,et al.  MINLP Solver Software , 2011 .

[3]  Constantin Zalinescu,et al.  A Nonlinear Extension of Hoffman's Error Bounds for Linear Inequalities , 2003, Math. Oper. Res..

[4]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[5]  Fred Glover,et al.  Surrogate Constraint Duality in Mathematical Programming , 1975, Oper. Res..

[6]  X. L. Sun,et al.  Computing exact solution to nonlinear integer programming: Convergent Lagrangian and objective level cut method , 2007, J. Glob. Optim..

[7]  E. L. Johnson Integer programming , 1980 .

[8]  Charles E. Blair,et al.  The value function of a mixed integer program: I , 1977, Discret. Math..

[9]  Ronald L. Rardin,et al.  Some relationships between lagrangian and surrogate duality in integer programming , 1979, Math. Program..

[10]  R. T. Rockafellart AUGMENTED LAGRANGIANS AND APPLICATIONS OF THE PROXIMAL POINT ALGORITHM IN CONVEX , 1976 .

[11]  F. Szász On cyclic groups , 1956 .

[12]  Egon Balas,et al.  Integer Programming , 2021, Encyclopedia of Optimization.

[13]  Jacques Desrosiers,et al.  Stabilized dynamic constraint aggregation for solving set partitioning problems , 2011, Eur. J. Oper. Res..

[14]  Jean B. Lasserre Erratum to "Generating functions and duality for integer programs": [Discrete Optimization 1 (2) (2004) 167-187] , 2005, Discret. Optim..

[15]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[16]  Santanu S. Dey,et al.  Some properties of convex hulls of integer points contained in general convex sets , 2013, Math. Program..

[17]  Gérard Cornuéjols,et al.  Polyhedral Approaches to Mixed Integer Linear Programming , 2010, 50 Years of Integer Programming.

[18]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[19]  Guy Desaulniers,et al.  Multi-phase dynamic constraint aggregation for set partitioning type problems , 2010, Math. Program..

[20]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[21]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[22]  F. Glover A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem , 1965 .

[23]  John N. Hooker,et al.  Inference Duality as a Basis for Sensitivity Analysis , 1999, Constraints.

[24]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[25]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[26]  Laurence A. Wolsey,et al.  Integer programming duality: Price functions and sensitivity analysis , 1981, Math. Program..

[27]  Harvey J. Greenberg,et al.  Surrogate Mathematical Programming , 1970, Oper. Res..

[28]  Ellis L. Johnson Integer programming : facets, subadditivity, and duality for group and semi-group problems , 1980 .

[29]  Diego Klabjan,et al.  Subadditive approaches in integer programming , 2007, Eur. J. Oper. Res..

[30]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[31]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[32]  Marius Sinclair AUGMENTED LAGRANGEAN RELAXATIONS IN GENERAL MIXED INTEGER PROGRAMMING , 1978 .

[33]  Jean B. Lasserre Integer programming , duality and superadditive functions , 2004 .

[34]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[35]  Ronald L. Rardin,et al.  Surrogate Dual Multiplier Search Procedures in Integer Programming , 1984, Oper. Res..

[36]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[37]  Robert R. Meyer,et al.  On the existence of optimal solutions to integer and mixed-integer programming problems , 1974, Math. Program..

[38]  M. Sion On general minimax theorems , 1958 .

[39]  Xiaoling Sun,et al.  Nonlinear Integer Programming , 2006 .

[40]  Jean B. Lasserre,et al.  Generating functions and duality for integer programs , 2004, Discret. Optim..

[41]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[42]  R. Burachik,et al.  A Deflected Subgradient Method Using a General Augmented Lagrangian Dualitywith Implications on Penalty Methods , 2010 .

[43]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[44]  Brian Boffey,et al.  A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem , 2000, Eur. J. Oper. Res..

[45]  M. Lübbecke Column Generation , 2010 .

[46]  Regina S. Burachik,et al.  On the absence of duality gap for Lagrange-type functions , 2005 .

[47]  Regina Sandra Burachik,et al.  Abstract Convexity and Augmented Lagrangians , 2007, SIAM J. Optim..

[48]  Andrea Lodi,et al.  Mixed integer nonlinear programming tools: a practical overview , 2011, 4OR.