Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics

Triggerable transient electronics are demonstrated with the use of a metastable poly(phthalaldehyde) polymer substrate and encapsulant. The rate of degradation is controlled by the concentration of the photo-acid generator and UV irradiance. This work expands on the materials that can be used for transient electronics by demonstrating transience in response to a preselected trigger without the need for solution-based degradation.

[1]  M. R. Kessler,et al.  Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics , 2014 .

[2]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[3]  Yonggang Huang,et al.  Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. , 2014, ACS nano.

[4]  Xian Huang,et al.  High‐Performance Biodegradable/Transient Electronics on Biodegradable Polymers , 2014, Advanced materials.

[5]  Heather J Kulik,et al.  Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer , 2014, Nature Chemistry.

[6]  Huanyu Cheng,et al.  25th Anniversary Article: Materials for High‐Performance Biodegradable Semiconductor Devices , 2014, Advanced materials.

[7]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[8]  Yonggang Huang,et al.  Transient, biocompatible electronics and energy harvesters based on ZnO. , 2013, Small.

[9]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[10]  Joshua A. Kaitz,et al.  End group characterization of poly(phthalaldehyde): surprising discovery of a reversible, cationic macrocyclization mechanism. , 2013, Journal of the American Chemical Society.

[11]  Xian Huang,et al.  Materials for Bioresorbable Radio Frequency Electronics , 2013, Advanced materials.

[12]  D. Weitz,et al.  Stimuli-Responsive Core–Shell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane , 2013 .

[13]  Scott T. Phillips,et al.  Reproducible and Scalable Synthesis of End-Cap-Functionalized Depolymerizable Poly(phthalaldehydes) , 2013 .

[14]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[15]  S. Köstler Polyaldehydes: homopolymers, block copolymers and promising applications , 2012 .

[16]  Philippe Dubois,et al.  Probe‐Based 3‐D Nanolithography Using Self‐Amplified Depolymerization Polymers , 2010, Advanced materials.

[17]  Scott R White,et al.  Programmable microcapsules from self-immolative polymers. , 2010, Journal of the American Chemical Society.

[18]  Scott T. Phillips,et al.  Patterned plastics that change physical structure in response to applied chemical signals. , 2010, Journal of the American Chemical Society.

[19]  Bernd Gotsmann,et al.  Probe-Based Nanolithography: Self-Amplified Depolymerization Media for Dry Lithography , 2010 .

[20]  S. P. Tucker Determination of ortho-phthalaldehyde in air and on surfaces. , 2008, Journal of environmental monitoring : JEM.

[21]  Roger F. Sinta,et al.  Mechanistic Studies of Photoacid Generation from Substituted 4,6-Bis(trichloromethyl)-1,3,5-triazines , 1997 .

[22]  S. Oikawa,et al.  Acid‐catalyzed degradation mechanism of poly(phthalaldehyde): Unzipping reaction of chemical amplification resist , 1997 .

[23]  B. Roald,et al.  The Dissolution of Magnesium in Hydrochloric Acid , 1951 .

[24]  C. Tanford Macromolecules , 1994, Nature.

[25]  J. Rushton,et al.  The Rate of Solution of Magnesium in Acids , 1929 .