A computational method for fuzzy Volterra-Fredholm integral equations

In this paper, we will study the application of homotopy perturbation method for solving fuzzy nonlinear Volterra-Fredholm integral equations of the second kind. Some examples are proposed to exhibit the efficiency of the method.

[1]  Ahmet Yildirim,et al.  Traveling Wave Solution of Korteweg-de Vries Equation using He's Homotopy Perturbation Method , 2007 .

[2]  Jafar Saberi-Nadjafi,et al.  He's homotopy perturbation method: An effective tool for solving nonlinear integral and integro-differential equations , 2009, Comput. Math. Appl..

[3]  Lotfi A. Zadeh,et al.  On Fuzzy Mapping and Control , 1996, IEEE Trans. Syst. Man Cybern..

[4]  Esmail Babolian,et al.  Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method , 2005, Appl. Math. Comput..

[5]  L A Zadeh,et al.  Linguistic variables, approximate reasoning and dispositions. , 1983, Medical informatics = Medecine et informatique.

[6]  Jong Yeoul Park,et al.  Fuzzy differential equations , 2000, Fuzzy Sets Syst..

[7]  V. Hutson Integral Equations , 1967, Nature.

[8]  Krishnan Balachandran,et al.  Existence of solutions of general nonlinear fuzzy Volterra-Fredholm integral equations , 2005 .

[9]  Ji-Huan He,et al.  Recent development of the homotopy perturbation method , 2008 .

[10]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[11]  Abraham Kandel,et al.  Numerical solutions of fuzzy differential and integral equations , 1999, Fuzzy Sets Syst..

[12]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[13]  Ji-Huan He,et al.  Comparison of homotopy perturbation method and homotopy analysis method , 2004, Appl. Math. Comput..

[14]  Esmail Babolian,et al.  Numerical method for solving linear Fredholm fuzzy integral equations of the second kind , 2007 .

[15]  Zuohua Ding,et al.  Existence of the Solutions of Fuzzy Differential Equations with Parameters , 1997, Inf. Sci..

[16]  Sudarsan Nanda,et al.  On integration of fuzzy mappings , 1989 .

[17]  D. Dubois,et al.  Towards fuzzy differential calculus part 3: Differentiation , 1982 .

[18]  Ji-Huan He,et al.  The homotopy perturbation method for nonlinear oscillators with discontinuities , 2004, Appl. Math. Comput..

[19]  D. Dubois,et al.  Towards fuzzy differential calculus part 1: Integration of fuzzy mappings , 1982 .

[20]  He Ouyang,et al.  Topological properties of the spaces of regular fuzzy sets , 1988 .

[21]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[22]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[23]  Ma Ming Some notes on the characterization of compact sets in ( E n , d p ) , 1993 .

[24]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[25]  S. Liao An explicit, totally analytic approximate solution for Blasius’ viscous flow problems , 1999 .

[26]  Young Chel Kwun,et al.  Existence of solutions of fuzzy integral equations in Banach spaces , 1995 .

[27]  James J. Buckley,et al.  Fuzzy eigenvalues and input-output analysis , 1990 .

[28]  Abraham Kandel,et al.  A new fuzzy arithmetic , 1999, Fuzzy Sets Syst..

[29]  R Badard,et al.  Fixed point theorems for fuzzy numbers , 1984 .

[30]  S. Liao AN EXPLICIT TOTALLY ANALYTIC APPROXIMATION OF BLASIUS VISCOUS FLOW PROBLEMS , 1999 .