Solid-state hydrogen storage for mobile applications: Quo Vadis?

In times of severe shortage of fossil fuels new strategies have to be developed to assure future mobility. Fuel cell driven automotives with hydrogen as an energy carrier is one alternative discussed for the substitution of gasoline in the long term. Both the generation as well as the storage of hydrogen are technical challenges which have to be solved before hydrogen technology can be a real alternative for mobile applications. This perspective paper highlights the state-of-the art in the field of hydrogen storage, especially in solids, including the technical limitations. New potential research fields are discussed which may contribute to future energy supply in niche applications.

[1]  I. Mudawar,et al.  Enhanced heat exchanger design for hydrogen storage using high-pressure metal hydride – Part 2. Experimental results , 2011 .

[2]  F. Schüth,et al.  Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods , 2006 .

[3]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[4]  D. Mori,et al.  Hydrogen Storage Materials for Fuel Cell Vehicles High-pressure MH System , 2005 .

[5]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.

[6]  Qingfeng Li,et al.  100-200°C Polymer Fuel Cells for use with NaAlH4 , 2005 .

[7]  O. B. Jensen,et al.  Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank , 2009 .

[8]  D. Mori,et al.  Recent challenges of hydrogen storage technologies for fuel cell vehicles , 2009 .

[9]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[10]  J. Bitter,et al.  Sodium alanate nanoparticles--linking size to hydrogen storage properties. , 2008, Journal of the American Chemical Society.

[11]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[12]  Andreas Züttel,et al.  Hydrogen storage methods , 2004, Naturwissenschaften.

[13]  W. Grochala,et al.  Y(BH4)3--an old-new ternary hydrogen store aka learning from a multitude of failures. , 2010, Dalton transactions.

[14]  J. H. van Lenthe,et al.  Hydrogen storage in magnesium clusters: quantum chemical study. , 2005, Journal of the American Chemical Society.

[15]  Duncan H. Gregory,et al.  Hydrogen storage materials: present scenarios and future directions , 2009 .

[16]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[17]  Xinhua Wang,et al.  A study on 70 MPa metal hydride hydrogen compressor , 2010 .

[18]  S. Sickafoose,et al.  Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system , 2006 .

[19]  C. Wolverton,et al.  Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage. , 2009, Journal of the American Chemical Society.

[20]  Li Zhou,et al.  Progress and problems in hydrogen storage methods , 2005 .

[21]  Donald J. Siegel,et al.  Discovery of novel hydrogen storage materials: an atomic scale computational approach , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  F. Schüth,et al.  Influence of the ball milling conditions on the preparation of rare earth aluminum hydrides , 2010 .

[23]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[24]  Sudarshan Kumar,et al.  System simulation model for high-pressure metal hydride hydrogen storage systems , 2010 .

[25]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[26]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[27]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[28]  M. Bowden,et al.  High capacity hydrogen storage in a hybrid ammonia borane–lithium amide material , 2009 .

[29]  Grace Ordaz,et al.  The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements , 2007 .

[30]  F. W. Dafert,et al.  Über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium , 1910 .

[31]  P. T. Moseley,et al.  Hydrogen storage by carbon materials , 2006 .

[32]  G. Sandrock,et al.  Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles , 2005 .

[33]  Guotao Wu,et al.  High-capacity hydrogen storage in lithium and sodium amidoboranes. , 2008, Nature materials.

[34]  A. Załuska,et al.  Nanocrystalline magnesium for hydrogen storage , 1999 .

[35]  Ulrich Eberle,et al.  Hydrogen storage: the remaining scientific and technological challenges. , 2007, Physical Chemistry, Chemical Physics - PCCP.

[36]  Kondo-Francois Aguey-Zinsou,et al.  Synthesis of Colloidal Magnesium: A Near Room Temperature Store for Hydrogen , 2008 .

[37]  Thomas Klassen,et al.  Hydrogen storage in magnesium-based hydrides and hydride composites , 2007 .

[38]  Simon Turner,et al.  Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume , 2002, Nature.

[39]  T. Abdel-Baset,et al.  Comments on solid state hydrogen storage systems design for fuel cell vehicles , 2009 .

[40]  B. Bogdanovic,et al.  Active MgH2Mg Systems for Reversible Chemical Energy Storage , 1990 .

[41]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[42]  Ewa Rönnebro,et al.  Calcium borohydride for hydrogen storage: catalysis and reversibility. , 2007, The journal of physical chemistry. B.

[43]  B. Bogdanovic,et al.  Mechanochemical preparation and investigation of properties of magnesium, calcium and lithium–magnesium alanates , 2006 .

[44]  F. Schüth Challenges in hydrogen storage , 2009 .

[45]  Francisco Espinosa-Loza,et al.  High-density automotive hydrogen storage with cryogenic capable pressure vessels , 2009 .

[46]  Moritz F. Kuehnel,et al.  Hydrazine borane: a promising hydrogen storage material. , 2009, Journal of the American Chemical Society.

[47]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[48]  G. Sandrock,et al.  Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics , 2006 .

[49]  Michael T. Kelly,et al.  A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst , 2000 .

[50]  S. Hino,et al.  Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5 , 2006 .

[51]  Zahira Yaakob,et al.  Solid-state Materials and Methods for Hydrogen Storage: A Critical Review , 2010 .

[52]  Donald J. Siegel,et al.  High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. , 2010, Chemical Society reviews.

[53]  Ulrich Eberle,et al.  Fuel cell vehicles: Status 2007 , 2007 .

[54]  J. Shim,et al.  On the reversibility of hydrogen storage in Ti- and Nb-catalyzed Ca(BH4)2 , 2008 .

[55]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[56]  Andreas Züttel,et al.  Dehydriding and rehydriding reactions of LiBH4 , 2005 .