Identification of state models using principal components analysis

Abstract A predictive state-space dynamic plant is identified using a two-stage approach based on principal components analysis. The procedure is applied to a simulated benchmark problem known as the overheads condensor reflux drum (OCRD) model, a non-linear multivariable plant with mixed dynamics. The identified model is validated against an independent test set and its step and frequency responses compared with a linearised analytical model of the OCRD.

[1]  A. Çinar,et al.  PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space , 1997 .

[2]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[3]  L. Nørgaard,et al.  Simultaneous determination of cobalt and nickel by flow injection analysis and partial least squares regression with outlier detection , 1992 .

[4]  Bernard Friedland,et al.  Control System Design: An Introduction to State-Space Methods , 1987 .

[5]  W. Harmon Ray,et al.  Dynamic PLS modelling for process control , 1993 .

[6]  N. Lawrence Ricker,et al.  Model predictive control with state estimation , 1990 .

[7]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[8]  C. Jeackle,et al.  Product design through multivariate sta-tistical analysis of process data , 1996 .

[9]  Richard C. Dorf,et al.  The Engineering Handbook , 1996 .

[10]  Theodora Kourti,et al.  Analysis, Monitoring and Fault Diagnosis of Industrial Processes Using Multivariate Statistical Projection Methods , 1996 .

[11]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[12]  Ali Cinar,et al.  Multivariate statistical methods for monitoring continuous processes: assessment of discrimination power of disturbance models and diagnosis of multiple disturbances , 1995 .

[13]  Rudolf Kulhavý,et al.  System modelling and identification : By Rolf Johansson. Prentice-Hall, Englewood Cliffs, NJ (1993). ISBN 0-13-482308-7 , 1997, Autom..

[14]  A. Negiz,et al.  Statistical monitoring of multivariable dynamic processes with state-space models , 1997 .

[15]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[16]  W. Harmon Ray,et al.  Chemometric methods for process monitoring and high‐performance controller design , 1992 .

[17]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[18]  Babu Joseph,et al.  Inferential control of processes: Part I. Steady state analysis and design , 1978 .

[19]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[20]  Catherine Porte,et al.  Automation and optimization of glycine synthesis , 1996 .

[21]  George W. Irwin,et al.  Fault detection in an overheads condenser using multivariate SPC , 1996 .

[22]  S. Skogestad,et al.  Composition estimator in a pilot-plant distillation column using multiple temperatures , 1991 .

[23]  Thomas F. Edgar,et al.  Use of principal component analysis for sensor fault identification , 1996 .

[24]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[25]  Theodora Kourti,et al.  Process analysis, monitoring and diagnosis, using multivariate projection methods , 1995 .

[26]  I. M. Alatiqi A Practical Procedure for Multivariable Control Systems Design , 1986 .

[27]  Svante Wold,et al.  Partial least-squares method for spectrofluorimetric analysis of mixtures of humic acid and lignin sulfonate , 1983 .

[28]  A. J. Morris,et al.  Batch process monitoring for consistent production , 1996 .

[29]  David M. Haaland,et al.  Quantitative infrared analysis of borophosphosilicate films using multivariate statistical methods , 1988 .

[30]  Manfred Morari,et al.  Robust Inferential Control for a Packed-Bed Reactor , 1990, 1990 American Control Conference.