Consistent modifications of SINDO1: I. Approximations and parameters

A consistent modification, MSINDO, of the semiempirical MO method SINDO1 is presented. Different basis sets are used for one‐ and two‐center interactions. The treatment of the core matrix elements in the nonorthogonal basis is retained with changes only for hydrogen and 3d orbitals. Orthogonalization corrections are now restricted to nonvanishing core matrix elements in the INDO approximation. The set of atomic parameters is increased, but bond parameters are no longer used. An automatic nonlinear least‐squares algorithm with a restricted step constraint is used for the optimization of parameters. Heats of formation are adjusted with inclusion of zero‐point energies obtained by a scaling procedure of the force constant matrix. The present version MSINDO provides significant improvements over previous versions. A brief comparison for ground‐state properties of the elements H, C, N, O, F, and Na to Cl is given. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 563–571, 1999

[1]  Walter Thiel,et al.  Beyond the MNDO model: Methodical considerations and numerical results , 1993, J. Comput. Chem..

[2]  M. Zerner,et al.  Determination of one‐centre core integrals from the average energies of atomic configurations , 1973 .

[3]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[4]  Karl Jug,et al.  Development and parametrization of sindo1 for second‐row elements , 1987 .

[5]  K. Jug,et al.  SINDO1 calculations of vibrational frequencies of adsorbed molecules , 1995 .

[6]  David L. Beveridge,et al.  Approximate molecular orbital theory , 1970 .

[7]  K. Jug,et al.  Application of SINDO1 to sulphur compounds , 1987 .

[8]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[9]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons , 1967 .

[10]  P. Löwdin On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals , 1950 .

[11]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions , 1963 .

[12]  Michael C. Zerner,et al.  Removal of core orbitals in ‘valence orbital only’ calculations , 1972 .

[13]  K. Jug,et al.  Application of SINDO1 to silicon, aluminum, and magnesium compounds , 1988 .

[14]  F. Harris Rapid Evaluation of Coulomb Integrals , 1969 .

[15]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[16]  Karl Jug,et al.  Consistent modifications of SINDO1: II. Applications to first‐ and second‐row elements , 1999 .

[17]  Karl Jug,et al.  On the rotational invariance of the fock equations in indo methods using d functions , 1985 .

[18]  Karl Jug,et al.  Semiempirical Molecular Orbital Calculations and Molecular Energies. A New Formula for the β Parameter , 1973 .

[19]  K. Jug,et al.  Application of SINDO1 to phosphorus compounds , 1988 .

[20]  K. Jug,et al.  Application of SINDO1 to chlorine and sodium compounds , 1987 .

[21]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[22]  J. Pople,et al.  Approximate Self‐Consistent Molecular‐Orbital Theory. V. Intermediate Neglect of Differential Overlap , 1967 .

[23]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .