Topological Data Analysis

Topological data analysis (TDA) can broadly be described as a collection of data analysis methods that find structure in data. These methods include clustering, manifold estimation, nonlinear dimension reduction, mode estimation, ridge estimation and persistent homology. This paper reviews some of these methods.

[1]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[2]  J. Hartigan Consistency of Single Linkage for High-Density Clusters , 1981 .

[3]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[4]  G. Sawitzki,et al.  Excess Mass Estimates and Tests for Multimodality , 1991 .

[5]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[6]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[8]  K. Worsley,et al.  Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics , 1995, Advances in Applied Probability.

[9]  Keith J. Worsley,et al.  The Geometry of Random Images , 1996 .

[10]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[11]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[12]  J. Marron,et al.  SCALE SPACE VIEW OF CURVE ESTIMATION , 2000 .

[13]  V. Koltchinskii Empirical geometry of multivariate data: a deconvolution approach , 2000 .

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  A. Markov,et al.  Insolubility of the Problem of Homeomorphy ∗ , 2001 .

[16]  A. Cuevas,et al.  Cluster analysis: a further approach based on density estimation , 2001 .

[17]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[18]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[19]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Probal Chaudhuri,et al.  Significance in Scale Space for Bivariate Density Estimation , 2002 .

[21]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[22]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[23]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[24]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.

[25]  Glenn De'ath,et al.  Extended dissimilarity: a method of robust estimation of ecological distances from high beta diversity data , 1999, Plant Ecology.

[26]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[27]  Matthias Hein Intrinsic Dimensionality Estimation of Submanifolds in R , 2005 .

[28]  Matthias Hein,et al.  Intrinsic dimensionality estimation of submanifolds in Rd , 2005, ICML.

[29]  B. Cadre Kernel estimation of density level sets , 2005, math/0501221.

[30]  D. Hinkley Annals of Statistics , 2006 .

[31]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2006, SCG '06.

[32]  Surajit Ray,et al.  A Nonparametric Statistical Approach to Clustering via Mode Identification , 2007, J. Mach. Learn. Res..

[33]  K. Worsley,et al.  Detecting Sparse Signals in Random Fields, With an Application to Brain Mapping , 2007 .

[34]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[35]  David Cohen-Steiner,et al.  Inferring Local Homology from Sampled Stratified Spaces , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[36]  A. G. Cohn,et al.  Topological Coding in the Hippocampus , 2007, q-bio/0702052.

[37]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[38]  D. Ringach,et al.  Topological analysis of population activity in visual cortex. , 2008, Journal of vision.

[39]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[40]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[41]  Carina Curto,et al.  Cell Groups Reveal Structure of Stimulus Space , 2008, PLoS Comput. Biol..

[42]  Moo K. Chung,et al.  Persistence Diagrams of Cortical Surface Data , 2009, IPMI.

[43]  A. González,et al.  Set estimation: another bridge between statistics and geometry , 2009 .

[44]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[45]  A. Rinaldo,et al.  Generalized density clustering , 2009, 0907.3454.

[46]  Sanjoy Dasgupta,et al.  Rates of convergence for the cluster tree , 2010, NIPS.

[47]  Rien van de Weygaert,et al.  Alpha Shape Topology of the Cosmic Web , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[48]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[49]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[50]  Miguel Á. Carreira-Perpiñán,et al.  The Elastic Embedding Algorithm for Dimensionality Reduction , 2010, ICML.

[51]  Herbert Edelsbrunner,et al.  Computing Robustness and Persistence for Images , 2010, IEEE Transactions on Visualization and Computer Graphics.

[52]  Thomas Sauerwald,et al.  Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms , 2010, SODA 2010.

[53]  L. Rosasco,et al.  Multiscale Geometric Methods for Estimating Intrinsic Dimension , 2010 .

[54]  Alessandro Rozza,et al.  Minimum Neighbor Distance Estimators of Intrinsic Dimension , 2011, ECML/PKDD.

[55]  Herbert Edelsbrunner,et al.  Probing Dark Energy with Alpha Shapes and Betti Numbers , 2011, 1110.5528.

[56]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[57]  Moo K. Chung,et al.  Discriminative persistent homology of brain networks , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[58]  Deniz Erdogmus,et al.  Locally Defined Principal Curves and Surfaces , 2011, J. Mach. Learn. Res..

[59]  Larry A. Wasserman,et al.  Manifold Estimation and Singular Deconvolution Under Hausdorff Loss , 2011, ArXiv.

[60]  Guangliang Chen,et al.  Spectral clustering based on local linear approximations , 2010, 1001.1323.

[61]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[62]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[63]  Leonidas J. Guibas,et al.  Witnessed k-Distance , 2011, Discrete & Computational Geometry.

[64]  S. P. Ellis,et al.  DESCRIBING HIGH-ORDER STATISTICAL DEPENDENCE USING \CONCURRENCE TOPOLOGY," WITH APPLICATION TO FUNCTIONAL MRI BRAIN DATA , 2012, 1212.1642.

[65]  Jacob Brown,et al.  Structure of the afferent terminals in the terminal ganglion of a cricket and persistent homology , 2012, BMC Neuroscience.

[66]  T. Duong,et al.  Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting , 2012, 1204.6160.

[67]  J. E. Chac'on,et al.  Clusters and water flows: a novel approach to modal clustering through Morse theory , 2012, 1212.1384.

[68]  Larry A. Wasserman,et al.  Nonparametric Ridge Estimation , 2012, ArXiv.

[69]  Yuri Dabaghian,et al.  A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology , 2012, PLoS Comput. Biol..

[70]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..

[71]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[72]  Alan Veliz-Cuba,et al.  The Neural Ring: An Algebraic Tool for Analyzing the Intrinsic Structure of Neural Codes , 2012, Bulletin of Mathematical Biology.

[73]  S. Mukherjee,et al.  Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.

[74]  Sivaraman Balakrishnan,et al.  Cluster Trees on Manifolds , 2013, NIPS.

[75]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[76]  Larry A. Wasserman,et al.  Non‐parametric inference for density modes , 2013, ArXiv.

[77]  Jae-Jin Song,et al.  Morphological brain network assessed using graph theory and network filtration in deaf adults , 2014, Hearing Research.

[78]  Frédéric Chazal,et al.  Convergence rates for persistence diagram estimation in topological data analysis , 2014, J. Mach. Learn. Res..

[79]  Moo K. Chung,et al.  Tracing the evolution of multi-scale functional networks in a mouse model of depression using persistent brain network homology , 2014, NeuroImage.

[80]  Brittany Terese Fasy,et al.  Introduction to the R package TDA , 2014, ArXiv.

[81]  Michael Werman,et al.  Efficient classification using the Euler characteristic , 2014, Pattern Recognit. Lett..

[82]  Maks Ovsjanikov,et al.  Persistence-Based Structural Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Hyekyoung Lee,et al.  Abnormal metabolic connectivity in the pilocarpine-induced epilepsy rat model: A multiscale network analysis based on persistent homology , 2014, NeuroImage.

[84]  J. S. Marron,et al.  Topological Descriptors of Histology Images , 2014, MLMI.

[85]  Daniel L. Rubin,et al.  Classification of hepatic lesions using the matching metric , 2012, Comput. Vis. Image Underst..

[86]  Primoz Skraba,et al.  Approximating Local Homology from Samples , 2012, SODA.

[87]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[88]  Chad Giusti,et al.  A No-Go Theorem for One-Layer Feedforward Networks , 2013, Neural Computation.

[89]  S. Mukherjee,et al.  Topological Consistency via Kernel Estimation , 2014, 1407.5272.

[90]  Matthew A. Wilson,et al.  Neural Representation of Spatial Topology in the Rodent Hippocampus , 2013, Neural Computation.

[91]  José E. Chacón,et al.  A Population Background for Nonparametric Density-Based Clustering , 2014, 1408.1381.

[92]  Yuri Dabaghian,et al.  The Effects of Theta Precession on Spatial Learning and Simplicial Complex Dynamics in a Topological Model of the Hippocampal Spatial Map , 2014, PLoS Comput. Biol..

[93]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[94]  Yuri Dabaghian,et al.  Reconceiving the hippocampal map as a topological template , 2014, eLife.

[95]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[96]  Yuri I. Manin,et al.  Neural codes and homotopy types: mathematical models of place field recognition , 2015, 1501.00897.

[97]  Mikhail Belkin,et al.  Beyond Hartigan Consistency: Merge Distortion Metric for Hierarchical Clustering , 2015, COLT.

[98]  Larry A. Wasserman,et al.  Risk Bounds For Mode Clustering , 2015, ArXiv.

[99]  Leif Ellingson,et al.  Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis , 2015 .

[100]  Steve Oudot,et al.  Eurographics Symposium on Geometry Processing 2015 Stable Topological Signatures for Points on 3d Shapes , 2022 .

[101]  Guo-Wei Wei,et al.  Multiresolution Topological Simplification , 2015, J. Comput. Biol..

[102]  Benjamin A. Dunn,et al.  Using persistent homology to reveal hidden information in neural data , 2015, 1510.06629.

[103]  Yen-Chi Chen,et al.  Density Level Sets: Asymptotics, Inference, and Visualization , 2015, 1504.05438.

[104]  C. Genovese,et al.  Investigating galaxy-filament alignments in hydrodynamic simulations using density ridges , 2015, 1508.04149.

[105]  Y. Dabaghian Geometry of Spatial Memory Replay , 2015, 1508.06579.

[106]  Frédéric Chazal,et al.  Rates of convergence for robust geometric inference , 2015, ArXiv.

[107]  Bei Wang,et al.  Geometric Inference on Kernel Density Estimates , 2013, SoCG.

[108]  P. Massobrio,et al.  A topological study of repetitive co-activation networks in in vitro cortical assemblies , 2015, Physical biology.

[109]  E. Pastalkova,et al.  Clique topology reveals intrinsic geometric structure in neural correlations , 2015, Proceedings of the National Academy of Sciences.

[110]  Victor Solo,et al.  Brain activity: Conditional dissimilarity and persistent homology , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[111]  Christopher R. Genovese,et al.  Cosmic web reconstruction through density ridges: method and algorithm , 2015, 1501.05303.

[112]  Christopher R. Genovese,et al.  Asymptotic theory for density ridges , 2014, 1406.5663.

[113]  Jaejun Yoo,et al.  Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages , 2016, Journal of Neuroscience Methods.

[114]  Yuri Dabaghian,et al.  Gamma synchronization of the hippocampal spatial map---topological model , 2016, 1603.06248.

[115]  Henry Markram,et al.  Quantifying topological invariants of neuronal morphologies , 2016, ArXiv.

[116]  Carina Curto,et al.  What can topology tell us about the neural code , 2016, 1605.01905.

[117]  Danielle S. Bassett,et al.  Two's company, three (or more) is a simplex - Algebraic-topological tools for understanding higher-order structure in neural data , 2016, J. Comput. Neurosci..

[118]  Dragan D. Nikolic,et al.  Using persistent homology and dynamical distances to analyze protein binding , 2014, Statistical applications in genetics and molecular biology.

[119]  Ludovic Duponchel,et al.  Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry. , 2016, Analytica chimica acta.

[120]  Topological analysis of the connectome of digital reconstructions of neural microcircuits , 2016, 1601.01580.

[121]  Sivaraman Balakrishnan,et al.  Statistical Inference for Cluster Trees , 2016, NIPS.

[122]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[123]  Richard F. Betzel,et al.  Closures and Cavities in the Human Connectome , 2016 .

[124]  Andrey Babichev,et al.  Topological mapping of space in bat hippocampus , 2016, 1601.04253.

[125]  Steve Oudot,et al.  Persistence-Based Pooling for Shape Pose Recognition , 2016, CTIC.

[126]  Andrey Babichev,et al.  Persistent Memories in Transient Networks , 2016, 1602.00681.

[127]  Alessandro E. P. Villa,et al.  The topology of the directed clique complex as a network invariant , 2015, SpringerPlus.

[128]  David Mason,et al.  On the Estimation of the Gradient Lines of a Density and the Consistency of the Mean-Shift Algorithm , 2016, J. Mach. Learn. Res..

[129]  Anne Shiu,et al.  Obstructions to convexity in neural codes , 2017, Adv. Appl. Math..

[130]  Jean M. Vettel,et al.  Cliques and cavities in the human connectome , 2016, Journal of Computational Neuroscience.

[131]  Elizabeth Gross,et al.  What Makes a Neural Code Convex? , 2017, SIAM J. Appl. Algebra Geom..

[132]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[133]  Danielle S. Bassett,et al.  Classification of weighted networks through mesoscale homological features , 2015, J. Complex Networks.

[134]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[135]  R. Ho Algebraic Topology , 2022 .