COMPTON DEGRADATION OF GAMMA-RAY LINE EMISSION FROM RADIOACTIVE ISOTOPES IN THE CLASSICAL NOVA V2491 CYGNI

To account for the non-thermal emission from the classical nova V2491 Cygni, we perform a series of numerical calculations of radiative transfer of γ-ray photons from the radioactive isotope 22Na in the matter ejected from a white dwarf. Using a simple wind model for the dynamical evolution of the ejecta and a Monte Carlo code, we calculate radiative transfer of the γ-ray photons in the ejecta. Repeated scattering of the γ-ray photons by electrons in the ejecta, i.e., Compton degradation, results in an extremely flat spectrum in the hard X-ray range, which successfully reproduces the observed spectrum of the X-ray emission from V2491 Cygni. The amount of the isotope 22Na synthesized in the ejecta is required to be 3 × 10–5 M ☉ to account for the flux of the hard X-ray emission. Our model indicates that the ejecta become transparent to the γ-ray photons within several tens days. Using the results, we briefly discuss the detectability of the γ-ray line emission by the INTEGRAL gamma-ray observatory and the Fermi Gamma-ray Space Telescope.

[1]  I. Hachisu,et al.  OPTICAL AND SUPERSOFT X-RAY LIGHT-CURVE MODELS OF CLASSICAL NOVA V2491 CYGNI: A NEW CLUE TO THE SECONDARY MAXIMUM , 2009, 0902.2424.

[2]  K. Nomoto,et al.  Nucleosynthesis in ONeMg Novae: Models versus Observations to Constrain the Masses of ONeMg White Dwarfs and Their Envelopes , 1999, astro-ph/9905279.

[3]  M. Leising,et al.  Positron annihilation gamma rays from novae , 1987 .

[4]  J. Rogers,et al.  TheNa21(p,γ)Mg22reaction fromEc.m.=200to1103keVin novae and x-ray bursts , 2004 .

[5]  G. Skinner,et al.  Discovery of hard X-ray emission from supernova 1987A , 1987, Nature.

[6]  G. Joyce,et al.  Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays , 1976 .

[7]  J. Drake,et al.  SUZAKU DETECTION OF SUPERHARD X-RAY EMISSION FROM THE CLASSICAL NOVA V2491 CYGNI , 2009, 0904.1693.

[8]  J. Ryan,et al.  Global galactic distribution of the 1.275 MeV γ-ray line emission , 2005 .

[9]  T. Ebisuzaki,et al.  The effects of mixing of the ejecta on the hard X-ray emissions from SN 1987A , 1987 .

[10]  Sumner Starrfield,et al.  The effects of thermonuclear reaction rate variations on nova nucleosynthesis: a sensitivity study , 2002 .

[11]  D. Clayton Li-7 gamma-ray lines from novae , 1981 .

[12]  J. Truran,et al.  Hydrodynamic Studies of Accretion onto Massive White Dwarfs: ONeMg-enriched Nova Outbursts , 1995 .

[13]  G. Shaviv,et al.  The formation of Al-26 in nova explosions , 1991 .

[14]  R. McCray,et al.  X-rays from supernova 1987A , 1988 .

[15]  J. Truran,et al.  The Effects of New Nuclear Reaction Rates and Opacities on Hydrodynamic Simulations of the Nova Outburst , 2000 .

[16]  F. Hoyle,et al.  Gamma-ray lines from novae , 1974 .

[17]  J. José,et al.  Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs , 1997, astro-ph/9709153.

[18]  Toshikazu Shigeyama,et al.  NON-THERMAL PHOTON PRODUCTION VIA BULK COMPTONIZATION AT SUPERNOVA SHOCK BREAKOUT , 2010, 1006.5173.

[19]  Mariko Kato,et al.  Optically thick winds and nova outbursts , 1994 .

[20]  K. Nomoto,et al.  X-rays expected from supernova 1987A compared with the source discovered by the Ginga satellite , 1987, Nature.

[21]  Barcelona,et al.  Gamma‐ray emission from individual classical novae , 1998 .

[22]  M. Leising,et al.  Gamma-Ray Limits on Na-22 Production in Novae , 1988 .

[23]  J. Truran,et al.  CNO abundances and hydrodynamic studies of the Nova outburst. V - 1.00-solar-mass models with small mass envelopes , 1978 .

[24]  D. A. Verner,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996 .

[25]  Eric D. Ragan,et al.  V2491 Cyg - a possible recurrent nova ? , 2008 .