Additive effects of amines on asymmetric hydrogenation of quinoxalines catalyzed by chiral iridium complexes.

The additive effects of amines were realized in the asymmetric hydrogenation of 2-phenylquinoxaline, and its derivatives, catalyzed by chiral cationic dinuclear triply halide-bridged iridium complexes [{Ir(H)[diphosphine]}(2)(μ-X)(3)]X (diphosphine = (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [(S)-BINAP], (S)-5,5'-bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole [(S)-SEGPHOS], (S)-5,5'-bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4,4'-bi-1,3-benzodioxole [(S)-DIFLUORPHOS]; X = Cl, Br, I) to produce the corresponding 2-aryl-1,2,3,4-tetrahydroquinoxalines. The additive effects of amines were investigated by solution dynamics studies of iridium complexes in the presence of N-methyl-p-anisidine (MPA), which was determined to be the best amine additive for achievement of a high enantioselectivity of (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline, and by labeling experiments, which revealed a plausible mechanism comprised of two cycles. One catalytic cycle was less active and less enantioselective; it involved the substrate-coordinated mononuclear complex [IrHCl(2)(2-phenylquinoxaline){(S)-BINAP}], which afforded half-reduced product 3-phenyl-1,2-dihydroquinoxaline. A poorly enantioselective disproportionation of this half-reduced product afforded (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline. The other cycle involved a more active hydride-amide catalyst, derived from amine-coordinated mononuclear complex [IrCl(2)H(MPA){(S)-BINAP}], which functioned to reduce 2-phenylquinoxaline to (S)-2-phenyl-1,2,3,4-tetrahydroquinoxaline with high enantioselectivity. Based on the proposed mechanism, an Ir(I)-JOSIPHOS (JOSIPHOS = (R)-1-[(S(p))-2-(dicyclohexylphosphino)ferrocenylethyl]diphenylphosphine) catalyst in the presence of amine additive resulted in the highest enantioselectivity for the asymmetric hydrogenation of 2-phenylquinoxaline. Interestingly, the reaction rate and enantioselectivity were gradually increased during the reaction by a positive-feedback effect from the product amines.

[1]  P. Phansavath,et al.  General asymmetric hydrogenation of 2-alkyl- and 2-aryl-substituted quinoxaline derivatives catalyzed by iridium-difluorphos: unusual halide effect and synthetic application. , 2012, The Journal of organic chemistry.

[2]  Yong‐Gui Zhou,et al.  Asymmetric hydrogenation of heteroarenes and arenes. , 2012, Chemical reviews.

[3]  Yong‐Gui Zhou,et al.  Pd-Catalyzed asymmetric hydrogenation of 3-(toluenesulfonamidoalkyl)indoles. , 2012, Organic & biomolecular chemistry.

[4]  M. Bartók,et al.  Achiral amine additives in the enantioselective hydrogenation of aliphatic α,β-unsaturated acids over cinchonidine-modified Pd/Al2O3 catalyst , 2012 .

[5]  Yong‐Gui Zhou,et al.  Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation. , 2012, Journal of the American Chemical Society.

[6]  Lijin Xu,et al.  Asymmetric hydrogenation of 2- and 2,3-substituted quinoxalines with chiral cationic ruthenium diamine catalysts. , 2011, Organic letters.

[7]  M. Rueping,et al.  Direct enantioselective access to 4-substituted tetrahydroquinolines by catalytic asymmetric transfer hydrogenation of quinolines. , 2011, Organic & biomolecular chemistry.

[8]  T. Nguyen,et al.  Chiral phosphoric acid catalyzed enantioselective transfer hydrogenation of ortho-hydroxybenzophenone N-H ketimines and applications. , 2011, Chemistry.

[9]  Yong‐Gui Zhou,et al.  An enantioselective approach to 2,3-disubstituted indolines through consecutive Brønsted acid/Pd-complex-promoted tandem reactions. , 2011, Chemistry.

[10]  A. Chan,et al.  Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. , 2011, Journal of the American Chemical Society.

[11]  Yong‐Gui Zhou,et al.  Highly enantioselective partial hydrogenation of simple pyrroles: a facile access to chiral 1-pyrrolines. , 2011, Journal of the American Chemical Society.

[12]  R. Kuwano,et al.  Catalytic asymmetric hydrogenation of N-Boc-imidazoles and oxazoles. , 2011, Journal of the American Chemical Society.

[13]  Scott J. Miller,et al.  Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. , 2011, Journal of the American Chemical Society.

[14]  Yong‐Gui Zhou,et al.  Convergent asymmetric disproportionation reactions: metal/Brønsted acid relay catalysis for enantioselective reduction of quinoxalines. , 2011, Journal of the American Chemical Society.

[15]  Yong‐Gui Zhou,et al.  Dehydration triggered asymmetric hydrogenation of 3-(α-hydroxyalkyl)indoles , 2011 .

[16]  T. Nguyen,et al.  Phosphoric acid-catalyzed enantioselective transfer hydrogenation of N-aryl-ortho-hydroxybenzophenone ketimines , 2011 .

[17]  M. Rueping,et al.  Brønsted acid differentiated metal catalysis by kinetic discrimination. , 2011, Chemical communications.

[18]  J. Benet‐Buchholz,et al.  Asymmetric Hydrogenation of Heteroaromatic Compounds Mediated by Iridium-(P-OP) Complexes , 2010 .

[19]  A. Pizzano,et al.  Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline , 2010, Molecules.

[20]  M. Neuburger,et al.  Unprecedented Reactivity of Iridium(I) Secondary Phosphine Oxide Complexes: Formation of P-Coordinated Phosphinate Complexes by P−Aryl Bond Cleavage , 2010 .

[21]  V. Ratovelomanana-Vidal,et al.  Iridium‐Difluorphos‐Catalyzed Asymmetric Hydrogenation of 2‐Alkyl‐ and 2‐Aryl‐Substituted Quinoxalines: A General and Efficient Route into Tetrahydroquinoxalines , 2010 .

[22]  Xumu Zhang,et al.  Iridium‐Catalyzed Asymmetric Hydrogenation of Quinoline Derivatives with C3*‐TunePhos , 2010 .

[23]  Anna M. Maj,et al.  Enantioselective hydrogenation of indoles derivatives catalyzed by Walphos/rhodium complexes , 2010 .

[24]  T. Sugimura,et al.  Is amine addition vital for highly enantioselective hydrogenation of α,β-unsaturated carboxylic acid over cinchonidine-modified palladium? , 2010 .

[25]  A. Chan,et al.  Highly efficient and enantioselective hydrogenation of quinolines and pyridines with Ir-Difluorphos catalyst. , 2010, Organic & biomolecular chemistry.

[26]  Kurt Püntener,et al.  Enantioselective Hydrogenation: Applications in Process R&D of Pharmaceuticals , 2010 .

[27]  Yong‐Gui Zhou,et al.  Asymmetric hydrogenation of quinolines activated by Brønsted acids , 2010 .

[28]  A. Chan,et al.  Highly Enantioselective Hydrogenation of Quinoline and Pyridine Derivatives with Iridium‐(P‐Phos) Catalyst , 2010 .

[29]  Xumu Zhang,et al.  Transition Metal‐Catalyzed Homogeneous Asymmetric Hydrogenation , 2010 .

[30]  M. Rueping,et al.  The first general, efficient and highly enantioselective reduction of quinoxalines and quinoxalinones. , 2010, Chemistry.

[31]  A. Baeza,et al.  Iridium-catalyzed asymmetric hydrogenation of N-protected indoles. , 2010, Chemistry.

[32]  B. Feringa,et al.  Asymmetric hydrogenation of 2-substituted N-protected-indoles catalyzed by rhodium complexes of BINOL-derived phosphoramidites , 2010 .

[33]  Yong‐Gui Zhou,et al.  Asymmetric hydrogenation with water/silane as the hydrogen source. , 2010, Chemistry.

[34]  Juan Zhou,et al.  Inhibiting deactivation of iridium catalysts with bulky substituents on coordination atoms , 2010 .

[35]  Merlín Rosales,et al.  Kinetics and Mechanisms of Homogeneous Catalytic Reactions. Part 10. Regioselective Hydrogenation of Quinoline Catalyzed by the Systems M2Cl2(COE)4/2 Triphos [M = Rh, Ir; COE = Cyclooctene; Triphos = 1,1,1-Tris(diphenylphosphinomethyl)Ethane] , 2010 .

[36]  A. Chan,et al.  Asymmetric hydrogenation of quinoxalines with diphosphinite ligands: a practical synthesis of enantioenriched, substituted tetrahydroquinoxalines. , 2009, Angewandte Chemie.

[37]  B. Feringa,et al.  Asymmetric Hydrogenation of Quinoxalines Catalyzed by Iridium/PipPhos , 2009 .

[38]  V. Ratovelomanana-Vidal,et al.  Unprecedented halide dependence on catalytic asymmetric hydrogenation of 2-aryl- and 2-alkyl-substituted quinolinium salts by using Ir complexes with difluorphos and halide ligands. , 2009, Chemistry.

[39]  Yanmei He,et al.  Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions , 2009 .

[40]  M. Bartók,et al.  Enantioselective hydrogenation of (E)-2-methyl-2-butenoic acid over cinchonidine modified Pd catalyst. Effect of the structure of achiral amine additives , 2009 .

[41]  Yong‐Gui Zhou,et al.  Highly enantioselective iridium-catalyzed hydrogenation of 2-benzylquinolines and 2-functionalized and 2,3-disubstituted quinolines. , 2009, The Journal of organic chemistry.

[42]  W. Leitner,et al.  Highly Efficient and Versatile Phosphine-Phosphoramidite Ligands for Asymmetric Hydrogenation , 2009 .

[43]  R. Kuwano CATALYTIC ASYMMETRIC HYDROGENATION OF 5-MEMBERED HETEROAROMATICS , 2008 .

[44]  Lijin Xu,et al.  Air-stable and phosphine-free iridium catalysts for highly enantioselective hydrogenation of quinoline derivatives. , 2008, Organic letters.

[45]  A. Chan,et al.  Hydrogenation of quinolines using a recyclable phosphine-free chiral cationic ruthenium catalyst: enhancement of catalyst stability and selectivity in an ionic liquid. , 2008, Angewandte Chemie.

[46]  G. Ercolani,et al.  Unraveling the mechanism of the Soai asymmetric autocatalytic reaction by first-principles calculations: induction and amplification of chirality by self-assembly of hexamolecular complexes. , 2008, Angewandte Chemie.

[47]  J. Hartwig,et al.  Intermolecular, catalytic asymmetric hydroamination of bicyclic alkenes and dienes in high yield and enantioselectivity. , 2008, Journal of the American Chemical Society.

[48]  W. Zeng,et al.  Iridium-catalyzed asymmetric hydrogenation of pyridine derivatives, 7,8-dihydro-quinolin-5(6H)-ones , 2008 .

[49]  Yong‐Gui Zhou,et al.  Synthesis of tunable bisphosphine ligands and their application in asymmetric hydrogenation of quinolines. , 2008, The Journal of organic chemistry.

[50]  C. Bolm,et al.  Synthesis of Sulfoximine-Derived P,N Ligands and their Applications in Asymmetric Quinoline Hydrogenations , 2008 .

[51]  B. Feringa,et al.  Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of monodentate BINOL-derived phosphoramidites , 2008 .

[52]  D. Du,et al.  The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines. , 2008, Angewandte Chemie.

[53]  D. MacMillan,et al.  Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. , 2007, Accounts of chemical research.

[54]  A. Chan,et al.  Asymmetric hydrogenation of quinolines with recyclable and air-stable iridium catalyst systems , 2007 .

[55]  Yong‐Gui Zhou Asymmetric hydrogenation of heteroaromatic compounds. , 2007, Accounts of chemical research.

[56]  A. Pfaltz,et al.  Iridium-catalyzed asymmetric hydrogenation of olefins. , 2007, Accounts of chemical research.

[57]  W. Zeng,et al.  Iridium-catalyzed asymmetric transfer hydrogenation of quinolines with Hantzsch esters , 2007 .

[58]  R. Kuwano,et al.  Palladium-catalyzed formal [4+2] cycloaddtion of o-xylylenes with olefins. , 2007, Journal of the American Chemical Society.

[59]  Y. Li,et al.  Enantioselective hydrogenation of quinolines catalyzed by Ir(BINAP)-cored dendrimers: dramatic enhancement of catalytic activity. , 2007, Organic letters.

[60]  A. Chan,et al.  Asymmetric hydrogenation of quinolines with high substrate/catalyst ratio. , 2007, Chemical communications.

[61]  K. Mashima,et al.  Preferential Geometry and Reactivity of Neutral Iridium(III) and Rhodium(III) Complexes Bearing a Flexible Heterochelate PN Ligand (PN = o-Ph2PC6H4CH2OCH2C5H4N-2) , 2007 .

[62]  Mao Chen,et al.  Asymmetric Hydrogenation of Pyridines: Enantioselective Synthesis of Nipecotic Acid Derivatives , 2006 .

[63]  Magnus Rueping,et al.  Eine hoch enantioselektive Brønsted‐Säure‐katalysierte Kaskadenreaktion: organokatalytische Transferhydrierung von Chinolinen und deren Anwendung in der Synthese von Alkaloiden , 2006 .

[64]  M. Rueping,et al.  A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. , 2006, Angewandte Chemie.

[65]  R. Kuwano,et al.  Ruthenium-catalyzed asymmetric hydrogenation of N-boc-indoles. , 2006, Organic letters.

[66]  M. Reetz,et al.  Asymmetric hydrogenation of quinolines catalyzed by iridium complexes of BINOL-derived diphosphonites. , 2006, Chemical communications.

[67]  A. Chan,et al.  A new class of versatile chiral-bridged atropisomeric diphosphine ligands: remarkably efficient ligand syntheses and their applications in highly enantioselective hydrogenation reactions. , 2006, Journal of the American Chemical Society.

[68]  Xiuwen Han,et al.  Asymmetric hydrogenation of quinolines and isoquinolines activated by chloroformates. , 2006, Angewandte Chemie.

[69]  Elisabetta Alberico,et al.  Asymmetric transfer hydrogenation: chiral ligands and applications. , 2006, Chemical Society reviews.

[70]  D. Blackmond Mechanistic study of the Soai autocatalytic reaction informed by kinetic analysis , 2006 .

[71]  Takashi Ito,et al.  Catalytic asymmetric hydrogenation of indoles using a rhodium complex with a chiral bisphosphine ligand PhTRAP , 2006 .

[72]  A. Chan,et al.  Highly Enantioselective Iridium-Catalyzed Hydrogenation of Quinoline Derivatives Using Chiral Phosphinite H8-BINAPO , 2005 .

[73]  Claude Y. Legault,et al.  Catalytic asymmetric hydrogenation of N-iminopyridinium ylides: expedient approach to enantioenriched substituted piperidine derivatives. , 2005, Journal of the American Chemical Society.

[74]  A. Chan,et al.  Air-stable Ir-(P-Phos) complex for highly enantioselective hydrogenation of quinolines and their immobilization in poly(ethylene glycol) dimethyl ether (DMPEG). , 2005, Chemical communications.

[75]  C. Graiff,et al.  Reactions of phosphine ligands with iridium complexes leading to C(sp3)-H bond activation , 2005 .

[76]  Xiuwen Han,et al.  Asymmetric Hydrogenation of Quinolines Catalyzed by Iridium with Chiral Ferrocenyloxazoline Derived N,P Ligands , 2004 .

[77]  Takashi Ito,et al.  Highly enantioselective synthesis of chiral 3-substituted indolines by catalytic asymmetric hydrogenation of indoles. , 2004, Organic letters.

[78]  F. Glorius,et al.  Effiziente asymmetrische Hydrierung von Pyridinen , 2004 .

[79]  F. Glorius,et al.  Efficient asymmetric hydrogenation of pyridines. , 2004, Angewandte Chemie.

[80]  A. Togni,et al.  Chiral Xyliphos Complexes for the Catalytic Imine Hydrogenation Leading to the Metolachlor Herbicide: Isolation of Catalyst–Substrate Adducts , 2004 .

[81]  R. Noyori,et al.  Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-rutheniumII complexes. , 2003, Journal of the American Chemical Society.

[82]  C. Pinel,et al.  Diastereoselective heterogeneous catalytic hydrogenation of 2-methyl nicotinic acid using pyroglutamate chiral auxiliary , 2003 .

[83]  Xiuwen Han,et al.  Highly enantioselective iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. , 2003, Journal of the American Chemical Society.

[84]  M. Burk,et al.  Synthesis and Applications of HexaPHEMP, a Novel Biaryl Diphosphine Ligand , 2003 .

[85]  J. Henschke,et al.  Enantioselective Hydrogenation of Imines Using a Diverse Library of Ruthenium Dichloride(diphosphine)(diamine) Precatalysts , 2003 .

[86]  B. Pugin,et al.  More than 100,000 Turnovers with Immobilized Ir‐Diphosphine Catalysts in an Enantioselective Imine Hydrogenation , 2002 .

[87]  T. Tilley,et al.  Structural and Chemical Properties of Zwitterionic Iridium Complexes Featuring the Tripodal Phosphine Ligand [PhB(CH2PPh2)3]- , 2002 .

[88]  P. Gallezot,et al.  Diastereoselective hydrogenation of 2-methylnicotinic acid derivatives with supported metallic catalysts , 2002 .

[89]  José A López,et al.  Diastereoselective formation of chiral iridium hydrides containing the chiral P,N-chelate ligand (4S)-2-(2-(diphenylphosphino)phenyl)-4-isopropyl-1,3-oxazoline. , 2002, Chemical communications.

[90]  D. Kondepudi,et al.  Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. , 2001, Accounts of chemical research.

[91]  F. Vizza,et al.  Hydrogenation of Quinoline by Rhodium Catalysts Modified with the Tripodal Polyphosphine Ligand MeC(CH2PPh2)3 , 2001 .

[92]  Xumu Zhang,et al.  Highly Enantioselective Hydrogenation of Acyclic Imines Catalyzed by Ir–f‐Binaphane Complexes , 2001 .

[93]  C. Bianchini,et al.  Transition metal complexes with the C1-symmetric diphosphines (R)-(R)-3-benzyl-2,4-bis(diphenylphosphino)pentane and (R)-(R)-3-benzyl(p-sulphonate)-2,4-bis(diphenylphosphino)pentane sodium salt. Applications to enantioselective catalysis in different phase systems , 2001 .

[94]  H. Blaser,et al.  Tunable ferrocenyl diphosphine ligands for the Ir-catalyzed enantioselective hydrogenation of N-aryl imines , 2001 .

[95]  R. Noyori,et al.  Asymmetrische Katalyse mit hinsichtlich Struktur und Funktion gezielt entworfenen Molekülen: die chemo‐ und stereoselektive Hydrierung von Ketonen , 2001 .

[96]  Ryoji Noyori,et al.  Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. , 2001, Angewandte Chemie.

[97]  V. Háda,et al.  Diastereoselective heterogeneous catalytic hydrogenation of N-heterocycles. Part I. Hydrogenation of pyridines , 2000 .

[98]  Ryoji Noyori,et al.  The Metal−Ligand Bifunctional Catalysis: A Theoretical Study on the Ruthenium(II)-Catalyzed Hydrogen Transfer between Alcohols and Carbonyl Compounds , 2000 .

[99]  H. Gröger,et al.  Zur Perfektionierung der asymmetrischen Katalyse: Additive und Co-Katalysatoren , 1999 .

[100]  H. Gröger,et al.  Towards Perfect Asymmetric Catalysis: Additives and Cocatalysts. , 1999, Angewandte Chemie.

[101]  K. Kanai,et al.  Synthesis of a key intermediate of levofloxacin via enantioselective hydrogenation catalyzed by iridium(I) complexes , 1998 .

[102]  C. Bianchini,et al.  Enantioselective Hydrogenation of 2-Methylquinoxaline to (−)-(2S)-2-Methyl-1,2,3,4-tetrahydroquinoxaline by Iridium Catalysis , 1998 .

[103]  A. Togni,et al.  The [IrCl(Diphosphine)]2/Fluoride System. Developing Catalytic Asymmetric Olefin Hydroamination , 1997 .

[104]  T. Ikariya,et al.  The Catalyst Precursor, Catalyst, and Intermediate in the RuII‐Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones , 1997 .

[105]  and Ryoji Noyori,et al.  Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes , 1997 .

[106]  R. Noyori,et al.  Katalysatorvorstufe, Katalysator und Zwischenstufe des RuII‐katalysierten, asymmetrischen Wasserstofftransfers zwischen Alkoholen und Ketonen , 1997 .

[107]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[108]  K. Tani,et al.  Iridium(I)-Catalyzed Asymmetric Hydrogenation of Prochiral Imines; Protic Amines as Catalyst Improvers. , 1995 .

[109]  K. Achiwa,et al.  EFFICIENT ASYMMETRIC HYDROGENATION OF IMINES CATALYZED BY A NEUTRAL IRIDIUM(I) COMPLEX OF (4R, 5R)-MOD-DIOP , 1994 .

[110]  R. Noyori,et al.  Asymmetric catalysis in organic synthesis , 1994 .

[111]  B. Chaudret,et al.  Kinetics and mechanism of the regioselective homogeneous hydrogenation of quinoline using [Rh(COD)(PPh3)2]PF6 as the catalyst precursor , 1993 .

[112]  Joseph S Merola,et al.  The chemistry of iridium hydride mer-(Me3P)3Ir(H)(2-furyl)(Cl): preferential reaction of an alkyne with an iridium-carbon bond in the presence of an iridium-hydrogen bond , 1993 .

[113]  R. Eisenberg,et al.  Synthesis and characterization of mono- and bis(silyl)iridium bis(phosphine) complexes , 1991 .

[114]  B. Pugin,et al.  Novel Diphosphinoiridium Catalysts for the Enantioselective Hydrogenation of N-Arylketimines , 1990 .

[115]  F. Spindler,et al.  Neuartige Diphosphinoiridium-Katalysatoren fr die enantioselektive Hydrierung vonN-Arylketiminen , 1990 .

[116]  D. Milstein,et al.  Rational design in homogeneous catalysis. Iridium(I)-catalyzed addition of aniline to norbornylene via nitrogen-hydrogen activation , 1988 .

[117]  S. Murata,et al.  Hydrogenation and hydrosilylation of quinoxaline by homogeneous rhodium catalysts , 1987 .

[118]  R. Fish,et al.  Homogeneous catalytic hydrogenation. 1. Regiospecific reductions of polynuclear aromatic and polynuclear heteroaromatic nitrogen compounds catalyzed by transition metal carbonyl hydrides , 1982 .