Reasoning about Sentiment and Knowledge Diffusion in Social Networks

Social media platforms, taken in conjunction, can be seen as complex networks; in this context, understanding how agents react to sentiments expressed by their connections is of great interest. Here, the authors show how Network Knowledge Bases help represent the integration of multiple social networks, and explore how information flow can be handled via belief revision operators for local (agent-specific) knowledge bases. They report on preliminary experiments on Twitter data showing that different agent types react differently to the same information — this is a first step toward developing tools to predict how agents behave as information flows in their social environment.

[1]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[2]  Paulo Shakarian,et al.  Reasoning about Complex Networks: A Logic Programming Approach , 2022, Theory Pract. Log. Program..

[3]  Sven Ove Hansson Kernel Contraction , 1994, J. Symb. Log..

[4]  Gerardo I. Simari,et al.  Belief Dynamics in Complex Social Networks , 2016 .

[5]  Michael Wooldridge,et al.  An Introduction to MultiAgent Systems, Second Edition , 2009 .

[6]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[7]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[8]  Peter Gärdenfors,et al.  Belief Revision , 1995 .

[9]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[10]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[11]  Filippo Menczer,et al.  Hoaxy: A Platform for Tracking Online Misinformation , 2016, WWW.

[12]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[13]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[14]  Eduardo L. Fermé,et al.  Belief Revision , 2007, Inteligencia Artif..

[15]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[16]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[17]  Gerardo I. Simari,et al.  A desiderata for modeling and reasoning with social knowledge , 2015 .

[18]  Sébastien Konieczny,et al.  Merging Information Under Constraints: A Logical Framework , 2002, J. Log. Comput..

[19]  Marco Schaerf,et al.  Arbitration (or How to Merge Knowledge Bases) , 1998, IEEE Trans. Knowl. Data Eng..

[20]  Guillermo Ricardo Simari,et al.  On the revision of informant credibility orders , 2014, Artif. Intell..

[21]  Pavlos Peppas,et al.  Handbook of Knowledge Representation Edited Belief Revision Pavlos Peppas 8.1 Introduction , 2022 .

[22]  Brian L. Ott The age of Twitter: Donald J. Trump and the politics of debasement , 2017 .

[23]  Guillermo Ricardo Simari,et al.  Prioritized and Non-prioritized Multiple Change on Belief Bases , 2011, Journal of Philosophical Logic.

[24]  Wendy W. Moe,et al.  Donald Trump and the 'Oxygen of Publicity': Branding, Social Media, and Mass Media in the 2016 Presidential Primary Elections , 2016 .

[25]  M. Gentzkow,et al.  Social Media and Fake News in the 2016 Election , 2017 .

[26]  S. Redner,et al.  Voter models on heterogeneous networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.