Borromean links and other non-conventional links in ‘polycatenated’ coordination polymers: re-examination of some puzzling networks

A number of coordination networks, exhibiting novel and fascinating types of entanglements of individual motifs have been reported throughout the years by many groups. The structural complexity of these species has caused, in some cases, misinterpretations regarding the correct nature of the entanglement. In this article, we analyse the structures of some polymeric networks of the ‘polycatenanes’ class, which have the peculiar feature of all the constituent motifs having lower dimensionality than that of the overall array. Unexpected topological features and new linkages, that had previously been overlooked, have been discovered. The most relevant finding concerns the first observation of examples of Borromean links in 3D and 2D arrays. These systems are comprised of layers that are not catenated but, nonetheless, inseparably entangled in an uncommon topological fashion.

[1]  M. P. Suh,et al.  A new metal-organic open framework consisting of threefold parallel interwoven (6,3) nets. , 2003, Inorganic chemistry.

[2]  Mark D. Smith,et al.  Syntheses and Characterizations of One-Dimensional Coordination Polymers Generated from Cadmium Nitrate and Bipyridine Ligands , 1999 .

[3]  Lan-sun Zheng,et al.  Hydrothermal synthesis of a novel microporous framework sustained by polycatenated [CuI2(ip)(4,4′-bipyridine)]n (ip = isophthalate) ladders , 2002 .

[4]  Fei Liu,et al.  Coordination Networks Based on Tetrahedral Silane Building Blocks: Influence of the Anion on Structures Adopted by Ag+−Si(p-C6H4CN)4 Arrays , 1997 .

[5]  Are Borromean Links So Rare , 2000 .

[6]  Davide M. Proserpio,et al.  Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile , 1999 .

[7]  S. W. Keller,et al.  Dimensional control of Cu(I)–bis(4-pyridyl)ethylene coordination networks , 2001 .

[8]  R. Robson,et al.  An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene) , 1997 .

[9]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[10]  K. Mislow,et al.  On Borromean links , 1994 .

[11]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[12]  M. V. Rajasekharan,et al.  One-Dimensional Coordination Polymers of Silver(I) with Aminomethylpyridines. Example of a Triple Helical Infinite Chain , 2000 .

[13]  M. Zaworotko,et al.  Crystal structure of the coordination polymer [Co(bipy)1.5(NO3)2]·CS2 (bipy=4,4′-bipyridine), a new motif for a network sustained by ‘T-shape’ building blocks , 1998 .

[14]  Wenbin Lin,et al.  Crystal engineering of NLO materials based on metal--organic coordination networks. , 2002, Accounts of chemical research.

[15]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[16]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[17]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[18]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[19]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[20]  Takehisa Dewa,et al.  Charge-Transfer Diamondoid Lattices: An Unprecedentedly Huge and Highly Catenating Diamondoid Network Arising from a Tetraphenol as a Tetrahedral Node and Benzoquinone as a Linear Spacer. , 2000, Angewandte Chemie.

[21]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[22]  C. Kepert,et al.  Zeolite-like crystal structure of an empty microporous molecular framework , 1999 .

[23]  Xintao Wu,et al.  A novel mixed-ligand molecular bilayer generated by self-assembly of “T-shaped” moieties, displaying an unusual entanglement , 2002 .

[24]  D. Proserpio,et al.  A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy = 1,2-bis(4-pyridyl)ethyne] , 1999 .

[25]  Xiao-Ming Chen,et al.  A New Porous 3-D Framework Constructed From Fivefold Parallel Interpenetration of 2-D (6,3) Nets: A Mixed-Valence Copper(I,II) Coordination Polymer [CuI2CuII(4,4′-bpy)2(pydc)2]·4H2O , 2003 .

[26]  Jean-Pierre Sauvage,et al.  Interlacing molecular threads on transition metals: catenands, catenates, and knots , 1990 .

[27]  Stuart R. Batten,et al.  Topology of interpenetration , 2001 .

[28]  Gerhard Klebe,et al.  A Radical Anion Salt of 2,5‐Dimethyl‐N,N′‐dicyanoquinonediimine with Extremely High Electrical Conductivity , 1986 .

[29]  D. Proserpio,et al.  Self-Assembly of Infinite Double Helical and Tubular Coordination Polymers from Ag(CF3SO3) and 1,3-Bis(4-pyridyl)propane , 1997 .

[30]  X. M. Chen,et al.  Molecular ladders with multiple interpenetration of the lateral arms into the squares of adjacent ladders observed for [M2(4,4'-bpy)3(H2O)2(phba)2] (NO3)(2).4H2O (M = Cu2+ or Co2+; 4,4'-bpy = 4,4'-bipyridine; phba = 4-hydroxybenzoate). , 2000, Inorganic chemistry.

[31]  Xintao Wu,et al.  Interpenetration in [Cd(isonicotinate)2(1,2-bis(4-pyridyl)-ethane)0.5(H2O)]n, a novel octahedral polymer containing an unusual two-dimensional bilayer motif generated by self-assembly of rectangle building blocks. , 2001, Chemical communications.

[32]  Wenbin Lin,et al.  Interlocked chiral nanotubes assembled from quintuple helices. , 2003, Journal of the American Chemical Society.

[33]  M. O'keeffe,et al.  New ice outdoes related nets in smallest-ring size , 1998, Nature.

[34]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[35]  Jean-Pierre Sauvage,et al.  A Synthetic Molecular Trefoil Knot , 1989 .

[36]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[37]  H. zur Loye,et al.  Two different one-dimensional structural motifs in the same coordination polymer: a novel interpenetration of infinite ladders by bundles of infinite chains. , 2001, Chemical communications.

[38]  Michael J. Zaworotko,et al.  Superstructural diversity in two dimensions: crystal engineering of laminated solids , 2001 .

[39]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[40]  Wenbin Lin,et al.  A Pillared Three-Dimensional Manganese(II) Coordination Network Containing Rectangular Channels: Synthesis, X-Ray Structure, and Magnetic Properties , 2000 .

[41]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[42]  Jeffrey S. Moore,et al.  Spontaneous assembly of a hinged coordination network , 1995, Nature.

[43]  J. Vittal,et al.  Coordination networks of Ag(I) and N,N′- bis(3-pyridinecarboxamide)-1,6-hexane: structures and anion exchange , 2002 .

[44]  A. Balch,et al.  Construction of a knitted crystalline polymer through the use of gold(I)–gold(I) interactions , 1995 .

[45]  Geoffrey A. Ozin,et al.  Self‐Assembling Frameworks: Beyond microporous oxides , 1996 .

[46]  M. O'Keeffe,et al.  Dense and rare four-connected nets , 1991 .

[47]  S. Rizzato,et al.  New examples of self-catenation in two three-dimensional polymeric co-ordination networks , 2000 .

[48]  M. Fujita,et al.  Interpenetrating Molecular Ladders and Bricks , 1995 .

[49]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[50]  K. Mislow A COMMENTARY ON THE TOPOLOGICAL CHIRALITY AND ACHIRALITY OF MOLECULES , 1996 .

[51]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[52]  R. Birge,et al.  Ligand Influences on Copper Cyanide Solid-State Architecture: Flattened and Fused "Slinky", Corrugated Sheet, and Ribbon Motifs in the Copper-Cyanide-Triazolate-Organoamine Family. , 1999, Inorganic chemistry.

[53]  A. Fletcher,et al.  Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni2(4,4'-bipyridine)3(NO3)4: guest modification of host sorption behavior. , 2001, Journal of the American Chemical Society.

[54]  Xiao‐Ming Chen,et al.  A novel polycatenated double-layered hybrid organic–inorganic material constructed from [Zn2(tp)(4,4′-bpy)]n2n+ layers and V4O124− pillars , 2001 .

[55]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[56]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[57]  G. Bernardinelli,et al.  Stereoselective Synthesis of Coordination Compounds: Self-Assembly of a Polymeric Double Helix with Controlled Chirality. , 1999, Angewandte Chemie.

[58]  K. Biradha,et al.  A 'three-in-one' crystal of coordination networks. , 2002, Chemical communications.

[59]  A. Blake,et al.  Polycatenated copper( I ) molecular ladders: a new structural motif in inorganic coordination polymers , 1997 .

[60]  T. Kuroda–Sowa,et al.  Toward the Construction of Functional Solid-State Supramolecular Metal Complexes Containing Copper(I) And Silver(I) , 1998 .

[61]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[62]  R. Bau CRYSTAL STRUCTURE OF THE ANTIARTHRITIC DRUG GOLD THIOMALATE (MYOCHRYSINE) : A DOUBLE-HELICAL GEOMETRY IN THE SOLID STATE , 1998 .

[63]  M. Maekawa,et al.  2-D interwoven and 3-D 5-fold interpenetrating silver(I) complexes of 1-(isocyanidomethyl)-1H-benzotriazole and 1,3-bis(dicyanomethylidene)indan. , 2000, Inorganic chemistry.

[64]  I. Dance,et al.  The intertwined double-(-AgSR-).infin.-strand chain structure of crystalline (3-methylpentane-3-thiolato) silver, in relation to (AgSr)8 molecules in solution , 1983 .

[65]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[66]  Mark D. Smith,et al.  New Crystalline Frameworks Formed from 1,2-Bis(4-pyridyl)ethyne and Co(NO3)2: Interpenetrating Molecular Ladders and an Unexpected Molecular Parquet Pattern from T-Shaped Building Blocks , 1999 .

[67]  Y. Diskin‐Posner,et al.  Crystal engineering of metalloporphyrin assemblies. New supramolecular architectures mediated by bipyridyl ligands. , 2002, Chemical communications.

[68]  M. Zaworotko,et al.  Nanoporous Structures by Design. , 2000, Angewandte Chemie.

[69]  N. V. Gulick Theoretical aspects of the linked ring problem , 1993 .

[70]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[71]  B. Patrick,et al.  Gold-gold interactions as crystal engineering design elements in heterobimetallic coordination polymers. , 2001, Inorganic chemistry.

[72]  Davide M Proserpio,et al.  Three novel interpenetrating diamondoid networks from self-assembly of 1,12-dodecanedinitrile with silver(I) salts. , 2002, Chemistry.

[73]  Kentaroh Watanabe,et al.  Self-assembled molecular ladders , 1998 .

[74]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[75]  Stuart R. Batten,et al.  Copper(I) dicyanamide coordination polymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration , 2000 .

[76]  M. O'Keefe,et al.  Plane nets in crystal chemistry , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[77]  P. Metrangolo,et al.  Fluorous interpenetrated layers in a three-component crystal matrix , 2003 .

[78]  A. J. Blake,et al.  Assembly of a three-dimensional polyknotted coordination polymer , 2000 .

[79]  B. Santo,et al.  Solid State , 2012 .

[80]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[81]  N. Champness,et al.  Extended networks formed by coordination polymers in the solid state , 1998 .

[82]  S. Batten,et al.  Syntheses, crystal structures, and magnetic properties of first row transition metal coordination polymers containing dicyanamide and 4,4′-bipyridine , 2002 .

[83]  E. Koch,et al.  Crystal structures. I. Patterns and symmetry , 1997 .

[84]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .

[85]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[86]  C. Janiak Functional Organic Analogues of Zeolites Based on Metal–Organic Coordination Frameworks , 1997 .

[87]  Jean-Pierre Sauvage,et al.  From classical chirality to topologically chiral catenands and knots , 1993 .

[88]  Joel S. Miller,et al.  Interpenetrating Lattices—Materials of the Future , 2001 .

[89]  S. Rizzato,et al.  Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional network in the coordination polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe = 1,2-bis(4-pyridyl)ethane] , 2000 .

[90]  Otto Ermer,et al.  Sevenfold diamond structure and conductivity of copper dicyanoquinonediimines Cu(DCNQI)2 , 1991 .

[91]  George M. Whitesides,et al.  Fabrication of Topologically Complex Three-Dimensional Microstructures: Metallic Microknots , 2000 .

[92]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.

[93]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[94]  A. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[95]  S. Batten,et al.  Ni(tpt)(NO3 )2 -A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. , 1999, Angewandte Chemie.

[96]  A. Erxleben Synthesis and structure of [[Ag(SalGly)].0.33H20]n: an infinite double helical coordination polymer. , 2001, Inorganic chemistry.

[97]  A. Babb,et al.  The first triple-layer 2-D coordination polymer:. , 2001, Inorganic chemistry.

[98]  O. Kahn Chemistry and physics of supramolecular magnetic materials. , 2000, Accounts of chemical research.

[99]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[100]  P. Stang,et al.  Single- and Double-Stranded Chains Assembled via Concomitant Metal Coordination and Hydrogen Bonding , 2001 .

[101]  Mitsuru Kondo,et al.  Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties , 2000 .

[102]  Chunhua Yan,et al.  Topological isomerism in the formation of a novel three-dimensional metal-organic polycatenane , 2002 .

[103]  Stuart R. Batten,et al.  Coordination polymers : Molecular crystals , 2001 .

[104]  M. Jennings,et al.  An organometallic polyrotaxane and a new type of polyrotaxane architecture , 2001 .

[105]  Carlucci,et al.  Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Architecture: A Nanoporous Network with Spongelike Behavior. , 2000, Angewandte Chemie.

[106]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[107]  J. Nicoud,et al.  Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triple stranded helical coordination network. , 2003, Chemical communications.

[108]  Xiao‐Ming Chen,et al.  Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. , 2002, Chemistry.

[109]  M. Yamashita,et al.  Framework engineering by anions and porous functionalities of Cu(II)/4,4'-bpy coordination polymers. , 2002, Journal of the American Chemical Society.

[110]  R. Robson,et al.  A net-based approach to coordination polymers , 2000 .

[111]  Douglas A. Loy,et al.  Tailored Porous Materials , 1999 .

[112]  D. Proserpio,et al.  SELF-ASSEMBLY OF NOVEL CO-ORDINATION POLYMERS CONTAINING POLYCATENATED MOLECULAR LADDERS AND INTERTWINED TWO-DIMENSIONAL TILINGS , 1999 .

[113]  Chen,et al.  Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties. , 1999, Angewandte Chemie.

[114]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[115]  Ian D. Williams,et al.  Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I−Copper-II Dimer Units: [Cu4{1,4-C6H4(COO)2}3(4,4‘-bipy)2]n , 2000 .