Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture

[1]  J. Limtrakul,et al.  Density Functional Investigation of the Conversion of Furfural to Furfuryl Alcohol by Reaction with i-Propanol over UiO-66 Metal-Organic Framework. , 2021, Inorganic chemistry.

[2]  Hyungju Ahn,et al.  Janus Graphene Oxide Sheets with Fe3O4 Nanoparticles and Polydopamine as Anodes for Lithium-Ion Batteries. , 2021, ACS applied materials & interfaces.

[3]  Yi-Ming Wei,et al.  A proposed global layout of carbon capture and storage in line with a 2 °C climate target , 2021, Nature Climate Change.

[4]  G. Stevens,et al.  Catalytic Solvent Regeneration for Energy-Efficient CO2 Capture , 2020, ACS Sustainable Chemistry & Engineering.

[5]  L. Xing,et al.  One-Step Synthesized SO42-/ZrO2-HZSM-5 Solid Acid Catalyst for Carbamate Decomposition in CO2 Capture. , 2020, Environmental science & technology.

[6]  S. Nam,et al.  Practical and inexpensive acid-activated montmorillonite catalysts for energy-efficient CO2 capture , 2020 .

[7]  Anmin Zheng,et al.  Accelerating Biodiesel Catalytic Production by Confined Activation of Methanol over High-Concentration Ionic Liquid-Grafted UiO-66 Solid Superacids , 2020 .

[8]  J. Fuglestvedt,et al.  Delayed emergence of a global temperature response after emission mitigation , 2020, Nature Communications.

[9]  A. Aziz,et al.  Simple rapid stabilization method through citric acid modification for magnetite nanoparticles , 2020, Scientific Reports.

[10]  Zhiwu Liang,et al.  Modified Heterogeneous Catalyst-Aided Regeneration of CO2 Capture Amines: A Promising Perspective for a Drastic Reduction in Energy Consumption , 2020 .

[11]  Qiang Xu,et al.  Metal-Organic Framework-Based Catalysts with Single Metal Sites. , 2020, Chemical reviews.

[12]  P. Keshavarz,et al.  Investigation of Carbon Dioxide Absorption Using Different Functionalized Fe3O4 Magnetic Nanoparticles , 2020 .

[13]  Yi-Ming Wei,et al.  Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era , 2020, Nature Communications.

[14]  Shuhong Yu,et al.  High-curvature transition metal chalcogenide nanostructures with profound proximity effect enable fast and selective CO2 electroreduction. , 2019, Angewandte Chemie.

[15]  Qi Wang,et al.  State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. , 2020, Chemical reviews.

[16]  Corinne Le Quéré,et al.  Carbon dioxide emissions continue to grow amidst slowly emerging climate policies , 2020 .

[17]  Shuhong Yu,et al.  High-curvature transition metal chalcogenide nanostructures with profound proximity effect enable fast and selective CO2 electroreduction. , 2019, Angewandte Chemie.

[18]  G. Stevens,et al.  Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent , 2019 .

[19]  Benjamin P Pritchard,et al.  New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community , 2019, J. Chem. Inf. Model..

[20]  M. Fang,et al.  Review of liquid nano-absorbents for enhanced CO2 capture. , 2019, Nanoscale.

[21]  H. van Asselt,et al.  Subtle differentiation of countries’ responsibilities under the Paris Agreement , 2019, Palgrave Communications.

[22]  M. Tavoni,et al.  An inter-model assessment of the role of direct air capture in deep mitigation pathways , 2019, Nature Communications.

[23]  W. Wenzel,et al.  Photoconductivity in Metal-Organic Framework (MOF) Thin Films. , 2019, Angewandte Chemie.

[24]  S. Nam,et al.  Efficient Ag2O–Ag2CO3 Catalytic Cycle and Its Role in Minimizing the Energy Requirement of Amine Solvent Regeneration for CO2 Capture , 2019, ACS Sustainable Chemistry & Engineering.

[25]  Andrew M. Kiss,et al.  Deliberate Modification of Fe3O4 Anode Surface Chemistry: Impact on Electrochemistry. , 2019, ACS applied materials & interfaces.

[26]  Zhiwu Liang,et al.  Reducing Energy Penalty of CO2 Capture Using Fe Promoted SO42-/ZrO2/MCM-41 Catalyst. , 2019, Environmental science & technology.

[27]  Christopher A. Trickett,et al.  Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst , 2018, Nature Chemistry.

[28]  Andrew H. Proppe,et al.  Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. , 2018, ACS applied materials & interfaces.

[29]  Sungyoul Park,et al.  Performance and Mechanism of Metal Oxide Catalyst-Aided Amine Solvent Regeneration , 2018, ACS Sustainable Chemistry & Engineering.

[30]  A. Russell,et al.  Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture , 2018, Nature Communications.

[31]  Y. Chabal,et al.  Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers , 2018, Nature Communications.

[32]  Wenping Hu,et al.  Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals. , 2017, Nanoscale.

[33]  Ilich A. Ibarra,et al.  Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties. , 2017, Dalton transactions.

[34]  Yeung-ho Park,et al.  Effects of Transition Metal Oxide Catalysts on MEA Solvent Regeneration for the Post-Combustion Carbon Capture Process , 2017 .

[35]  Kang Li,et al.  Superior removal of arsenic from water with zirconium metal-organic framework UiO-66 , 2015, Scientific Reports.

[36]  Kimoon Kim,et al.  Hydrolytic Transformation of Microporous Metal-Organic Frameworks to Hierarchical Micro- and Mesoporous MOFs. , 2015, Angewandte Chemie.

[37]  Zuoming Zhou,et al.  Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes. , 2015, Environmental science & technology.

[38]  Jie Su,et al.  A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores. , 2015, Angewandte Chemie.

[39]  Kyungsu Na,et al.  Superacidity in sulfated metal-organic framework-808. , 2014, Journal of the American Chemical Society.

[40]  Dongyuan Zhao,et al.  Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. , 2009, Angewandte Chemie.

[41]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[42]  Elizabeth Sheehy Editorial , 2003 .

[43]  Jan M. L. Martin,et al.  Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe , 2000, physics/0011030.

[44]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .