A filter-trust-region method for simple-bound constrained optimization

In this paper we propose a filter-trust-region algorithm for solving nonlinear optimization problems with simple bounds. It extends the technique of Gould et al. [Gould, N.I.M. Sainvitu, C. and Toint, Ph.L., 2005, A filter-trust-region method for unconstrained optimization. SIAM Journal on Optimization, 16(2), 341–357.] designed for unconstrained optimization problems. The two main ingredients of the method are a filter-trust-region algorithm and a gradient-projection method. The algorithm is shown to be globally convergent to at least one first-order critical point. Numerical experiments on a large set of problems are also reported.

[1]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[2]  P. Toint Global Convergence of a a of Trust-Region Methods for Nonconvex Minimization in Hilbert Space , 1988 .

[3]  P. Toint,et al.  Global convergence of a class of trust region algorithms for optimization with simple bounds , 1988 .

[4]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[5]  Chih-Jen Lin,et al.  Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..

[6]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[7]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[8]  Stefan Ulbrich,et al.  A globally convergent primal-dual interior-point filter method for nonlinear programming , 2004, Math. Program..

[9]  Nicholas I. M. Gould,et al.  A Multidimensional Filter Algorithm for Nonlinear Equations and Nonlinear Least-Squares , 2004, SIAM J. Optim..

[10]  Lorenz T. Biegler,et al.  Global and Local Convergence of Line Search Filter Methods for Nonlinear Programming , 2002 .

[11]  Clóvis C. Gonzaga,et al.  A Globally Convergent Filter Method for Nonlinear Programming , 2003, SIAM J. Optim..

[12]  Jorge J. Moré,et al.  Trust regions and projected gradients , 1988 .

[13]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[14]  Roger Fletcher,et al.  On the global convergence of an SLP–filter algorithm that takes EQP steps , 2003, Math. Program..

[15]  J. M. Martínez,et al.  Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization , 2005 .

[16]  Zdenek Dostál,et al.  Box Constrained Quadratic Programming with Proportioning and Projections , 1997, SIAM J. Optim..

[17]  Nicholas I. M. Gould,et al.  FILTRANE, a Fortran 95 filter-trust-region package for solving nonlinear least-squares and nonlinear feasibility problems , 2007, TOMS.

[18]  Philippe L. Toint,et al.  Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints , 1997, Math. Program..

[19]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[20]  Nicholas I. M. Gould,et al.  GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization , 2003, TOMS.

[21]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[22]  L. Vicente,et al.  A Globally Convergent Primal-Dual Interior-Point Filter Method for Nonconvex Nonlinear Programming , 2000 .

[23]  Nicholas I. M. Gould,et al.  A Filter-Trust-Region Method for Unconstrained Optimization , 2005, SIAM J. Optim..

[24]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..