Eulerian and Lagrangian approaches to multidimensional condensation and collection

Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here an Eulerian scheme based on the Smo ...

[1]  Axel Brandenburg,et al.  Simulations of nonhelical hydromagnetic turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  S. Shima,et al.  The super‐droplet method for the numerical simulation of clouds and precipitation: a particle‐based and probabilistic microphysics model coupled with a non‐hydrostatic model , 2007, physics/0701103.

[3]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[4]  Keiji Ohtsuki,et al.  Artificial acceleration in accumulation due to coarse mass-coordinate divisions in numerical simulation , 1990 .

[5]  R. Shaw PARTICLE-TURBULENCE INTERACTIONS IN ATMOSPHERIC CLOUDS , 2003 .

[6]  Simulations of dust-trapping vortices in protoplanetary discs , 2003, astro-ph/0310059.

[7]  Andreas Eibeck,et al.  Stochastic Particle Approximations for Smoluchoski’s Coagualtion Equation , 2001 .

[8]  Wojciech W. Grabowski,et al.  Growth of Cloud Droplets by Turbulent Collision–Coalescence , 2006 .

[9]  J. Schumacher,et al.  Lagrangian Mixing Dynamics at the Cloudy-Clear Air Interface , 2014 .

[10]  C. Dullemond,et al.  Modeling dust growth in protoplanetary disks: The breakthrough case , 2014, 1406.0870.

[11]  J. Seinfeld Atmospheric Chemistry and Physics of Air Pollution , 1986 .

[12]  Francesco Picano,et al.  Continuous Growth of Droplet Size Variance due to Condensation in Turbulent Clouds. , 2015, Physical review letters.

[13]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[14]  Ü. Rannik,et al.  A study of aerosol activation at the cloud edge with high resolution numerical simulations , 2015 .

[15]  A. K. Naumann,et al.  A Lagrangian drop model to study warm rain microphysical processes in shallow cumulus , 2015 .

[16]  Simon Unterstrasser,et al.  Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations , 2016 .

[17]  W. Grabowski,et al.  Growth of Cloud Droplets in a Turbulent Environment , 2013 .

[18]  G. Falkovich,et al.  Acceleration of rain initiation by cloud turbulence , 2002, Nature.

[19]  T. Elperin,et al.  Acceleration of raindrop formation due to the tangling-clustering instability in a turbulent stratified atmosphere. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  K. D. Beheng,et al.  Representation of microphysical processes in cloud‐resolving models: Spectral (bin) microphysics versus bulk parameterization , 2015 .

[21]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part IV. A New Parameterization , 1974 .

[22]  Anders Johansen,et al.  Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities , 2011, 1111.0221.

[23]  T. Elperin,et al.  Critical comments to results of investigations of drop collisions in turbulent clouds , 2007 .

[24]  Siegfried Raasch,et al.  A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision , 2012 .

[25]  K. Shariff,et al.  Turbulent Condensation of Droplets: Direct Simulation and a Stochastic Model , 2009 .

[26]  Anthony S. Wexler,et al.  Droplets to Drops by Turbulent Coagulation , 2005 .

[27]  A. Khain,et al.  Turbulence effects on the collision kernel. I: Formation of velocity deviations of drops falling within a turbulent three‐dimensional flow , 1997 .

[28]  Robert I. A. Patterson,et al.  Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity , 2015, J. Comput. Phys..

[29]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part I. Double Distributions , 1974 .

[30]  C. Dullemond,et al.  A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets , 2008, 0807.5052.

[31]  Olivier Geoffroy,et al.  Parametric representation of the cloud droplet spectra for LES warm bulk microphysical schemes , 2009 .

[32]  Y. Ogura,et al.  The Development of Warm Rain in a Cumulus Model , 1973 .

[33]  Jeffrey S. Oishi,et al.  Rapid planetesimal formation in turbulent circumstellar disks , 2007, Nature.

[34]  A. Lozar,et al.  Long-resident droplets at the stratocumulus top , 2016 .

[35]  M. Dubey,et al.  The potential impacts of pollution on a nondrizzling stratus deck : Does aerosol number matter more than type? , 2008 .

[36]  J. Bec,et al.  Abrupt growth of large aggregates by correlated coalescences in turbulent flow. , 2015, Physical review. E.

[37]  Alan Gadian,et al.  Cloud‐aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model , 2010 .

[38]  Sylwester Arabas,et al.  Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence , 2012, 1205.3313.

[39]  S. Bouallègue,et al.  A New Method , 2021, Black Power and the American Myth.

[40]  Shankar Mahalingam,et al.  Deterministic forcing of homogeneous, isotropic turbulence , 1994 .

[41]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[42]  Sylwester Arabas,et al.  Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence , 2013 .

[43]  J. Verlinde,et al.  Physics and Chemistry of Clouds: Transformations , 2011 .

[44]  A. K. Naumann,et al.  Recirculation and growth of raindrops in simulated shallow cumulus , 2016 .

[45]  F. Toschi,et al.  Cloud Droplet Growth by Condensation in Homogeneous Isotropic Turbulence , 2009 .

[46]  P. Saffman,et al.  On the collision of drops in turbulent clouds , 1956, Journal of Fluid Mechanics.

[47]  Bridget S. Wade,et al.  DeepMIP: experimental design for model simulations of the EECO, PETM, and pre-PETM , 2016 .

[48]  J. Seinfeld,et al.  A numerical model of the cloud‐topped marine boundary layer with explicit treatment of supersaturation–number concentration correlations , 2002 .