A fifth-order multiple-scale solution for Hopf bifurcations

The subject of this paper is the multiple-time-scale analysis of Hopf bifurcations up to fifth-order nonlinearities. It is shown how an asymptotic fifth-order expansion captures the change in the nature of the limit cycle from stable to unstable and viceversa. The formulation is validated by applying it to a simple mechanical system for which there exists an analytical limit-cycle solution. Applications include the pre- and post-flutter behavior of a typical section with nonlinear spring having a stable limit cycle (supercritical Hopf bifurcation) that turns into an unstable one, because of fifth-order nonlinearities.

[1]  Antonio Carcaterra,et al.  Shock spectral analysis of elastic systems impacting on the water surface , 2000 .

[2]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[3]  Ali H. Nayfeh,et al.  A Perturbation Method for Treating Nonlinear Oscillation Problems , 1965 .

[4]  Vimal Singh,et al.  Perturbation methods , 1991 .

[5]  Franco Mastroddi Aeroservoelasticità: problematiche nonlineari , 1994 .

[6]  Franco Mastroddi,et al.  LIMIT-CYCLE STABILITY REVERSAL NEAR A HOPF BIFURCATION WITH AEROELASTIC APPLICATIONS , 2002 .

[7]  Earl H. Dowell A Modern Course in Aeroelasticity , 1999 .

[8]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[9]  L. Morino A perturbation method for treating nonlinear panel flutter problems. , 1969 .

[10]  P. Chen,et al.  LIMIT-CYCLE-OSCILLATION STUDIES OF A FIGHTER WITH EXTERNAL STORES , 1998 .

[11]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[12]  M. Poincaré,et al.  Sur les propriétés des fonctions définies par les équations aux différences partielles , 1879 .

[13]  Y. Wong,et al.  Flutter of an airfoil with a cubic nonlinear restoring force , 1998 .

[14]  G. Sandri The foundations of nonequilibrium statistical mechanics, I☆ , 1963 .

[15]  E. Frieman,et al.  On a New Method in the Theory of Irreversible Processes , 1963 .

[16]  Earl H. Dowell,et al.  Studies in nonlinear aeroelasticity , 1988 .

[17]  Earl H. Dowell,et al.  Flutter and Stall Response of a Helicopter Blade with Structural Nonlinearity , 1992 .

[18]  WIND TUNNEL INVESTIGATION OF TRANSONIC LIMIT CYCLE FLUTTER , 1998 .

[19]  A. Kamel Perturbation method in the theory of nonlinear oscillations , 1970 .

[20]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[21]  Luigi Morino,et al.  Stability Analysis of Nonlinear Differential Autonomous Systems with Applications to Flutter , 1976 .