Uncertainty assessment and optimization of hydrological model with the Shuffled Complex Evolution Metropolis algorithm: an application to artificial neural network rainfall-runoff model
暂无分享,去创建一个
Jianzhong Zhou | Lixiang Song | Qiang Zou | Jun Guo | Xiaofan Zeng | Jian-zhong Zhou | Jun Guo | Lixiang Song | Q. Zou | X. Zeng
[1] Kaoru Takara,et al. Hydrological model performance comparison through uncertainty recognition and quantification , 2007 .
[2] Karel J. Keesman,et al. Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .
[3] C. Diks,et al. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .
[4] George M. Hornberger,et al. Sustainable water resource management under hydrological uncertainty , 2008 .
[5] Soichi Nishiyama,et al. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff , 2007 .
[6] Hoshin Vijai Gupta,et al. Model identification for hydrological forecasting under uncertainty , 2005 .
[7] Chuntian Cheng,et al. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series , 2009 .
[8] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[9] Chuntian Cheng,et al. A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction , 2008 .
[10] Martyn P. Clark,et al. Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling , 2008 .
[11] Soroosh Sorooshian,et al. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .
[12] Soroosh Sorooshian,et al. Calibration of rainfall‐runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model , 1993 .
[13] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[14] K. Beven,et al. Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .
[15] Hafzullah Aksoy,et al. Artificial neural network models for forecasting monthly precipitation in Jordan , 2009 .
[16] L. Rabiner,et al. An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.
[17] Keith Beven,et al. A manifesto for the equifinality thesis , 2006 .
[18] H. Scholten,et al. Prediction Uncertainty in an Ecological Model of the Oosterschelde Estuary , 1991 .
[19] K. Beven,et al. Model Calibration and Uncertainty Estimation , 2006 .
[20] Patrick Willems,et al. Uncertainties in Rainfall–Runoff Modeling , 2005 .
[21] Reza Maknoon,et al. Assessment of flood forecasting lead time based on generalized likelihood uncertainty estimation approach , 2006 .
[22] K. P. Sudheer,et al. A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .
[23] K. Beven,et al. Comment on “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” by Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson , 2009 .
[24] J. Stedinger,et al. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method , 2008 .
[25] Qingyun Duan,et al. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction , 2006 .
[26] Mohammad Bagher Menhaj,et al. Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.
[27] Henrik Madsen,et al. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .
[28] B. Bates,et al. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .
[29] Jasper A. Vrugt,et al. Comparison of point forecast accuracy of model averaging methods in hydrologic applications , 2010 .
[30] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[31] Martyn P. Clark,et al. Multi‐objective calibration of forecast ensembles using Bayesian model averaging , 2006 .
[32] Bellie Sivakumar,et al. Characterization and prediction of runoff dynamics: a nonlinear dynamical view , 2002 .
[33] J. Vrugt,et al. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors , 2010 .
[34] Kuolin Hsu,et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .
[35] Soroosh Sorooshian,et al. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .
[36] Hubert H. G. Savenije,et al. Model complexity control for hydrologic prediction , 2008 .
[37] Martyn P. Clark,et al. Rainfall‐runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme , 2009 .
[38] George Kuczera,et al. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .
[39] Henrik Madsen,et al. An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow simulation , 2004 .
[40] Patrick M. Reed,et al. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .
[41] Dong-Jun Seo,et al. Towards the characterization of streamflow simulation uncertainty through multimodel ensembles , 2004 .
[42] Karel J. Keesman,et al. Membership-set estimation using random scanning and principal componet analysis , 1990 .
[43] Breanndán Ó Nualláin,et al. Parameter optimisation and uncertainty assessment for large-scale streamflow simulation with the LISFLOOD model , 2007 .
[44] Feyzan Misirli Baysal. Improving efficiency and effectiveness of Bayesian recursive parameter estimation for hydrologic models , 2003 .
[45] Lucy Marshall,et al. Towards dynamic catchment modelling: a Bayesian hierarchical mixtures of experts framework , 2007 .
[46] P. Mantovan,et al. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .
[47] Bo Liu,et al. Projected streamflow in the Huaihe River Basin (2010–2100) using artificial neural network , 2010 .
[48] Chuntian Cheng,et al. Long-Term Prediction of Discharges in Manwan Hydropower Using Adaptive-Network-Based Fuzzy Inference Systems Models , 2005, ICNC.
[49] Cajo J. F. ter Braak,et al. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .
[50] M. Trosset,et al. Bayesian recursive parameter estimation for hydrologic models , 2001 .
[51] Saman Razavi,et al. Long‐lead seasonal rainfall forecasting using time‐delay recurrent neural networks: a case study , 2008 .
[52] Henrik Madsen,et al. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .
[53] Ashish Sharma,et al. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .
[54] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[55] Bruce A. Robinson,et al. Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging , 2007 .
[56] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[57] Willem Bouten,et al. Information content of data for identifying soil hydraulic parameters from outflow experiments , 2001 .
[58] K. Beven. Rainfall-Runoff Modelling: The Primer , 2012 .
[59] R. Lippmann,et al. An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.
[60] Steven M. Gorelick,et al. Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas , 2005 .
[61] S. Sorooshian,et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .
[62] Wesley W. Wallender,et al. Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization / W06503, doi:10.1029/2003WR002706 , 2004 .
[63] Keith Beven,et al. So just why would a modeller choose to be incoherent , 2008 .
[64] Frank T.-C. Tsai,et al. Bayesian model averaging assessment on groundwater management under model structure uncertainty , 2010 .
[65] Ozgur Kisi,et al. Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting , 2009 .
[66] Soroosh Sorooshian,et al. Multi-objective global optimization for hydrologic models , 1998 .
[67] Henrik Madsen,et al. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling , 2008 .
[68] O. Kisi. Neural Networks and Wavelet Conjunction Model for Intermittent Streamflow Forecasting , 2009 .
[69] S. P. Neuman,et al. Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .