Modelling of mechanical microstructure changes in the catalyst layer of a polymer electrolyte membrane fuel cell

[1]  Fangming Jiang,et al.  Stresses and their impacts on proton exchange membrane fuel cells: A review , 2017 .

[2]  R. Rajapakse,et al.  In-situ simulation of membrane fatigue in polymer electrolyte fuel cells , 2017 .

[3]  Tae-Hyun Kim,et al.  Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells , 2017 .

[4]  François Lapicque,et al.  A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability , 2016 .

[5]  G. Molaeimanesh,et al.  A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation , 2016 .

[6]  M. Arenz,et al.  Fuel cell catalyst degradation: Identical location electron microscopy and related methods , 2016 .

[7]  E. Kjeang,et al.  Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography , 2016 .

[8]  S. Knights,et al.  Effect of catalyst layer defects on local membrane degradation in polymer electrolyte fuel cells , 2016 .

[9]  E. Alizadeh,et al.  Investigation of contact pressure distribution over the active area of PEM fuel cell stack , 2016 .

[10]  Kyoungdoug Min,et al.  A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation , 2015 .

[11]  Thomas Kadyk,et al.  Catalyst Degradation in Fuel Cell Electrodes: Accelerated Stress Tests and Model-based Analysis , 2015 .

[12]  L. Karpenko-Jereb,et al.  Modelling of the mechanical durability of constrained Nafion membrane under humidity cycling , 2015 .

[13]  G. G. Wang,et al.  Creep properties of catalyst coated membranes for polymer electrolyte fuel cells , 2015 .

[14]  G. G. Wang,et al.  Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions , 2015 .

[15]  Jean W. Zu,et al.  Humidity and Temperature Cycling Effects on Cracks and Delaminations in PEMFCs , 2015 .

[16]  Erik Kjeang,et al.  Mechanical degradation of fuel cell membranes under fatigue fracture tests , 2015 .

[17]  Erik Kjeang,et al.  Membrane degradation during combined chemical and mechanical accelerated stress testing of polymer electrolyte fuel cells , 2014 .

[18]  R. J. Kline,et al.  Confinement-driven increase in ionomer thin-film modulus. , 2014, Nano letters.

[19]  Whangi Kim,et al.  Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups , 2014 .

[20]  Alex Bates,et al.  Simulation and experimental analysis of the clamping pressure distribution in a PEM fuel cell stack , 2013 .

[21]  M. Santare,et al.  An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane , 2012 .

[22]  R. Dauskardt,et al.  Contamination and moisture absorption effects on the mechanical properties of catalyst coated membranes in PEM fuel cells , 2012 .

[23]  Mary C. Boyce,et al.  Hygro-thermal mechanical behavior of Nafion during constrained swelling , 2011 .

[24]  Mustafa Fazil Serincan,et al.  Mechanical behavior of the membrane during the polymer electrolyte fuel cell operation , 2011 .

[25]  S. Hallett,et al.  A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements , 2010 .

[26]  Karren L. More,et al.  Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies , 2010 .

[27]  Chongdu Cho,et al.  Gradation of mechanical properties in gas diffusion electrode. Part 1: Influence of nano-scale heterogeneity in catalyst layer on interfacial strength between catalyst layer and membrane , 2010 .

[28]  C. Cho,et al.  Gradation of mechanical properties in gas-diffusion electrode. Part 2: Heterogeneous carbon fiber and damage evolution in cell layers , 2010 .

[29]  T. Lim,et al.  The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method , 2010 .

[30]  Mathias Schulze,et al.  A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells , 2009 .

[31]  David A. Dillard,et al.  Fatigue and creep to leak tests of proton exchange membranes using pressure-loaded blisters , 2009 .

[32]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[33]  Sean James Ashton,et al.  Fuel cell catalyst degradation on the nanoscale , 2008 .

[34]  Zhong-Sheng Liu,et al.  Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling Part II. Simulation and understanding , 2008 .

[35]  Zhong-Sheng Liu,et al.  Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: Part I. Mechanical model , 2008 .

[36]  W. B. Johnson,et al.  Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses , 2007 .

[37]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[38]  S. Case,et al.  Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile , 2006 .

[39]  W. B. Johnson,et al.  Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle , 2006 .

[40]  Michael Fowler,et al.  Morphological features (defects) in fuel cell membrane electrode assemblies , 2006 .

[41]  Karren L. More,et al.  Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions , 2005 .

[42]  Jingrong Yu,et al.  In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification , 2005 .

[43]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[44]  P. Camanho,et al.  Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials , 2003 .

[45]  Stephen R Reid,et al.  Modelling Interlaminar and Intralaminar Damage in Filament-Wound Pipes under Quasi-Static Indentation , 2002 .

[46]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[47]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[48]  Zhong‐sheng Liu,et al.  Experimental Observations of Microstructure Changes in the Catalyst Layers of Proton Exchange Membrane Fuel Cells under Wet-Dry Cycles , 2018 .

[49]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[50]  P. Wriggers,et al.  FINITE ELEMENT FORMULATION OF LARGE DEFORMATION IMPACT-CONTACT PROBLEMS WITH FRICTION , 1990 .

[51]  A. Needleman,et al.  A tangent modulus method for rate dependent solids , 1984 .

[52]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[53]  R. Hill The mathematical theory of plasticity , 1950 .