Capacity and the quasicentral modulus
暂无分享,去创建一个
[1] P. Koskela,et al. On functions with derivatives in a Lorentz space , 1999 .
[2] V. Anandam. Harmonic Functions and Potentials on Finite or Infinite Networks , 2011 .
[3] Dan-Virgil Voiculescu. The condenser quasicentral modulus , 2021 .
[4] B. Simon. Trace ideals and their applications , 1979 .
[5] Dan-Virgil Voiculescu. The formula for the quasicentral modulus in the case of spectral measures on fractals , 2021, Journal of Fractal Geometry.
[6] D. Voiculescu,et al. s-Numbers of singular integrals for the invariance of absolutely continuous spectra in fractional dimensions , 1990 .
[7] D. Voiculescu. Almost normal operators mod Hilbert-Schmidt and the K-theory of the Banach algebras $E\Lambda(\Omega)$ , 2011, 1112.4930.
[8] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[9] V. Maz'ya,et al. Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities. , 2008, 0804.3051.
[10] Paolo M. Soardi,et al. Potential Theory on Infinite Networks , 1994 .
[11] G. Burton. Sobolev Spaces , 2013 .
[12] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[13] F. Cipriani. Noncommutative potential theory: A survey , 2016 .
[14] M. Rieffel. Standard deviation is a strongly Leibniz seminorm , 2012, 1208.4072.
[15] J. Heinonen,et al. SCALING INVARIANT SOBOLEV-LORENTZ CAPACITY ON R , 2006 .
[16] D. Voiculescu. Commutants mod normed ideals , 2018, Advances in Noncommutative Geometry.
[17] L. Evans. Measure theory and fine properties of functions , 1992 .
[18] D. Voiculescu. On the existence of quasicentral approximate units relative to normed ideals. Part I , 1990 .
[19] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .