Improving the magnetic heating by disaggregating nanoparticles

[1]  B. Mehdaoui,et al.  Complex Nano-objects Displaying Both Magnetic and Catalytic Properties: A Proof of Concept for Magnetically Induced Heterogeneous Catalysis. , 2015, Nano letters.

[2]  Pilar Herrasti,et al.  High Specific Absorption Rate and Transverse Relaxivity Effects in Manganese Ferrite Nanoparticles Obtained by an Electrochemical Route , 2015 .

[3]  G. Goya,et al.  Influence of size distribution and field amplitude on specific loss power , 2015 .

[4]  S. Veintemillas-Verdaguer,et al.  Particle Interactions in Liquid Magnetic Colloids by Zero Field Cooled Measurements: Effects on Heating Efficiency , 2015 .

[5]  Rudolf Hergt,et al.  Magnetic particle hyperthermia—a promising tumour therapy? , 2014, Nanotechnology.

[6]  N. Thanh,et al.  Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. , 2014, Nanoscale.

[7]  V. Velasco,et al.  γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application , 2014 .

[8]  E. Egito,et al.  Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications , 2014 .

[9]  Nguyen T. K. Thanh,et al.  Mechanisms of nucleation and growth of nanoparticles in solution. , 2014, Chemical reviews.

[10]  C. Ravagli,et al.  Heating ability of cobalt ferrite nanoparticles showing dynamic and interaction effects , 2014 .

[11]  P. Decuzzi,et al.  Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. , 2014, ACS nano.

[12]  A. Hernando,et al.  Magnetism in nanoparticles: tuning properties with coatings , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  R. Sáez-Puche,et al.  Superparamagnetic Behavior of MFe2O4 Nanoparticles and MFe2O4/SiO2 Composites (M: Co, Ni). , 2013 .

[14]  B. Mehdaoui,et al.  Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results , 2013, 1301.5590.

[15]  Rocío Costo,et al.  Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles , 2012 .

[16]  D. Baldomir,et al.  Adjustable Hyperthermia Response of Self‐Assembled Ferromagnetic Fe‐MgO Core–Shell Nanoparticles by Tuning Dipole–Dipole Interactions , 2012 .

[17]  A. Kirschning,et al.  New Synthetic Opportunities in Miniaturized Flow Reactors with Inductive Heating , 2012 .

[18]  Cristina Freire,et al.  Superparamagnetic MFe2O4 (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route , 2012 .

[19]  M. Drofenik,et al.  Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis , 2012 .

[20]  H. Shokrollahi,et al.  Ferrite-based magnetic nanofluids used in hyperthermia applications , 2012 .

[21]  U. Nowak,et al.  Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles , 2012 .

[22]  Sébastien Lachaize,et al.  Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study , 2011 .

[23]  G. Goya,et al.  The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles , 2011, Nanoscale research letters.

[24]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[25]  M. Morales,et al.  Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia , 2011, 1103.3786.

[26]  Peter Wust,et al.  Magnetic nanoparticle hyperthermia for prostate cancer , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[27]  Arturo Mediano,et al.  Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles , 2010 .

[28]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[29]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[30]  Á. Villanueva,et al.  Hyperthermia HeLa Cell Treatment with Silica-Coated Manganese Oxide Nanoparticles , 2009, 0907.3278.

[31]  A. Mediano,et al.  Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids , 2009 .

[32]  Takashi Nakagawa,et al.  Suitability of commercial colloids for magnetic hyperthermia , 2009 .

[33]  C. Sangregorio,et al.  A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni)” , 2009 .

[34]  R. Costo,et al.  Magnetic Nanoparticles for Power Absorption: optimizing size, shape and magnetic properties. , 2009, 0901.3891.

[35]  L. Lacroix,et al.  Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behavior and large losses , 2008, 0810.4109.

[36]  L. Rossi,et al.  Ion dependence of magnetic anisotropy in MFe2O4 (MFe, Co, Mn) nanoparticles synthesized by high-temperature reaction , 2008 .

[37]  S. Dutz,et al.  Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy , 2007 .

[38]  S. Dutz,et al.  Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy , 2006 .

[39]  W. Weitschies,et al.  The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia , 2006 .

[40]  Choong-Sub Lee,et al.  Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method , 2003 .

[41]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[42]  Taeghwan Hyeon,et al.  Chemical synthesis of magnetic nanoparticles. , 2003, Chemical communications.

[43]  Sabino Veintemillas-Verdaguer,et al.  Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles , 1999 .

[44]  E. Blums,et al.  Synthesis and properties of Mn-Zn ferrite ferrofluids , 1999 .

[45]  Chen,et al.  Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. , 1996, Physical review. B, Condensed matter.

[46]  R. Costo,et al.  Synthesis of Inorganic Nanoparticles , 2012 .

[47]  J. Smit,et al.  Ferrites : physical properties of ferrimagnetic oxides in relation to their technical applications , 1959 .