Analytical formulation of optimum rotor interdisciplinary design with a three-dimensional wake

An analytical formulation of optimum rotor interdisciplinary design is presented. A finite-state aeroelastic rotor model, coupling generalized dynamic wake with blade finite elements, is applied to perform the optimum rotor blade design for improved aerodynamic performance and vehicle vibration, while a feasible direction nonlinear optimizer, CONMIN, provides the optimization algorithm. The approach features a systematic rotor aeroelastic model which offers an efficient analytical tool, and retains necessary aerodynamic and blade dynamic building blocks for a sufficient rotor dynamic response analysis. The formulation is well suited for an efficient design sensitivity computation without resorting to finite difference, and thus provides a practical design tool. The results show improved rotor aerodynamic performance and reduced hub vibratory loads for the optimized blade as compared to the advanced rotor of reference design.