Open Questions in Reverse Mathematics

We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.

[1]  Noopur Pathak A computational aspect of the Lebesgue differentiation theorem , 2009, J. Log. Anal..

[2]  S. Barry Cooper,et al.  Computability In Context: Computation and Logic in the Real World , 2009 .

[3]  Harvey M. Friedman Metamathematics of Ulm Theory , 2001 .

[4]  Carl G. Jockusch,et al.  Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.

[5]  Joseph S. Miller,et al.  Effectiveness for infinite variable words and the Dual Ramsey Theorem , 2004, Arch. Math. Log..

[6]  Herman Geuvers,et al.  Logic Colloquium 2006 , 2009 .

[7]  Alberto Marcone,et al.  On Fraïssé's conjecture for linear orders of finite Hausdorff rank , 2009, Ann. Pure Appl. Log..

[8]  C. St. J. A. Nash-Williams,et al.  On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Takako Nemoto Determinacy of Wadge classes and subsystems of second order arithmetic , 2009, Math. Log. Q..

[10]  Alberto Marcone,et al.  WQO AND BQO THEORY IN SUBSYSTEMS OF SECOND ORDER ARITHMETIC , 2003 .

[11]  Jeffry L. Hirst,et al.  Reverse mathematics, computability, and partitions of trees , 2009, J. Symb. Log..

[12]  Carl G. Jockusch,et al.  On the strength of Ramsey's theorem for pairs , 2001, Journal of Symbolic Logic.

[13]  Jeff B. Paris,et al.  Initial segments of models of Peano's axioms , 1977 .

[14]  U. Kohlenbach Higher Order Reverse Mathematics , 2000 .

[15]  R. Soare,et al.  Π⁰₁ classes and degrees of theories , 1972 .

[16]  J. Girard Proof Theory and Logical Complexity , 1989 .

[17]  Michael Rathjen,et al.  A note on the theory of positive induction, $${{\rm ID}^*_1}$$ , 2010, Arch. Math. Log..

[18]  Jeffry L. Hirst,et al.  Ramsey’s theorem for trees: the polarized tree theorem and notions of stability , 2010, Arch. Math. Log..

[19]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[20]  Stephen G. Simpson,et al.  Kurt Gödel : essays for his centennial , 2010 .

[21]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[22]  Andreas Blass SOME QUESTIONS ARISING FROM HINDMAN'S THEOREM , 2005 .

[23]  Carl G. Jockusch,et al.  Corrigendum to: “On the strength of Ramsey's Theorem for pairs” , 2009, The Journal of Symbolic Logic.

[24]  Gunnar Wilken,et al.  The Bachmann-Howard Structure in Terms of Σ1-Elementarity , 2006, Arch. Math. Log..

[25]  Richard A. Shore,et al.  The limits of determinacy in second order arithmetic: consistency and complexity strength , 2012, Israel Journal of Mathematics.

[26]  Stephen G. Simpson,et al.  Located sets and reverse mathematics , 2000, Journal of Symbolic Logic.

[27]  Chris J. Conidis Chain conditions in computable rings , 2010 .

[28]  Rodney G. Downey,et al.  Computability-theoretic and proof-theoretic aspects of partial and linear orderings , 2003 .

[29]  Joseph R. Mileti Partition Theorems and Computability Theory , 2005, Bull. Symb. Log..

[30]  Antonio Montalbán,et al.  Up to equimorphism, hyperarithmetic is recursive , 2005, Journal of Symbolic Logic.

[31]  Manuel Lerman,et al.  On recursive linear orderings , 1981 .

[32]  Antonio Montalbán,et al.  RANKED STRUCTURES AND ARITHMETIC TRANSFINITE RECURSION , 2008 .

[33]  Galen Weitkamp,et al.  Recursive Aspects of Descriptive Set Theory , 1985 .

[34]  Michael Rathjen,et al.  Proof-Theoretic Investigations on Kruskal's Theorem , 1993, Ann. Pure Appl. Log..

[35]  Timothy J. Carlson,et al.  Some unifying principles in Ramsey theory , 1988, Discret. Math..

[36]  Gunnar Wilken,et al.  Assignment of ordinals to patterns of resemblance , 2007, Journal of Symbolic Logic.

[37]  Peter A. Cholak FREE SETS AND REVERSE MATHEMATICS , 2003 .

[38]  C. Smorynski Nonstandard Models and Related Developments , 1985 .

[39]  C. St. J. A. Nash-Williams,et al.  On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  Philip D. Welch Weak systems of determinacy and arithmetical quasi-inductive definitions , 2011, J. Symb. Log..

[41]  Stephen G. Simpson,et al.  Logical analysis of some theorems of combinatorics and topological dynamics , 1987 .

[42]  Alberto Marcone,et al.  The Veblen functions for computability theorists , 2009, The Journal of Symbolic Logic.

[43]  Stephen G. Simpson,et al.  The Godel Hierarchy and Reverse Mathematics , 2008 .

[44]  Jeffry L. Hirst Hindman's theorem, ultrafilters, and reverse mathematics , 2004, J. Symb. Log..

[45]  Richard Laver,et al.  On Fraisse's order type conjecture , 1971 .

[46]  Stephen G. Simpson,et al.  Logic and Combinatorics , 1987 .

[47]  Richard A. Shore Effective Mathematics of the Uncountable: Reverse mathematics, countable and uncountable: a computational approach , 2013 .

[48]  Timothy J. Carlson,et al.  Patterns of resemblance of order 2 , 2009, Ann. Pure Appl. Log..

[49]  Richard A. Shore,et al.  On the strength of Fraïssé’s conjecture , 1993 .

[50]  James Hunter,et al.  HIGHER-ORDER REVERSE TOPOLOGY , 2008 .

[51]  Péter Gács,et al.  Randomness on Computable Probability Spaces—A Dynamical Point of View , 2009, Theory of Computing Systems.

[52]  Steffen Lempp,et al.  On the role of the collection principle for Sigma^0_2-formulas in second-order reverse mathematics , 2010 .

[53]  Stephen G. Simpson,et al.  Factorization of polynomials and Σ10 induction , 1986, Ann. Pure Appl. Log..

[54]  Jeffry L. Hirst Reverse Mathematics and Ordinal Exponentiation , 1994, Ann. Pure Appl. Log..

[55]  Fernando Ferreira,et al.  Groundwork for weak analysis , 2002, Journal of Symbolic Logic.

[56]  Alberto Marcone,et al.  Reverse mathematics and the equivalence of definitions for well and better quasi-orders , 2004, J. Symb. Log..

[57]  Marcia J. Groszek,et al.  Reverse mathematics and Ramsey's property for trees , 2010, J. Symb. Log..

[58]  Xiaokang Yu,et al.  Measure theory and weak König's lemma , 1990, Arch. Math. Log..

[59]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[60]  Takeshi Yamazaki,et al.  Uniform versions of some axioms of second order arithmetic , 2004, Math. Log. Q..

[61]  Kazuyuki Tanaka,et al.  Δ03-determinacy, comprehension and induction , 2007, J. Symb. Log..

[62]  Jeremy Avigad,et al.  Fundamental notions of analysis in subsystems of second-order arithmetic , 2006, Ann. Pure Appl. Log..

[63]  Jeremy Avigad,et al.  The metamathematics of ergodic theory , 2009, Ann. Pure Appl. Log..

[64]  Alberto Marcone On the logical strength of Nash-Williams' theorem on transfinite sequences , 1994, math/9408204.

[65]  Antonio Montalbán Indecomposable linear Orderings and Hyperarithmetic Analysis , 2006, J. Math. Log..

[66]  Steffen Lempp,et al.  Comparing DNR and WWKL , 2004, J. Symb. Log..

[67]  Timothy J. Carlson,et al.  Elementary patterns of resemblance , 2001, Ann. Pure Appl. Log..

[68]  Itay Neeman Necessary use of Σ¹₁ induction in a reversal , 2011, J. Symb. Log..

[69]  Stephen G. Simpson,et al.  A Dual Form of Ramsey's Theorem , 1984 .

[70]  Antonio Montalbán,et al.  On the Equimorphism Types of Linear Orderings , 2007, Bulletin of Symbolic Logic.

[71]  Denis R. Hirschfeldt,et al.  Combinatorial principles weaker than Ramsey's Theorem for pairs , 2007, J. Symb. Log..

[72]  H. Friedman,et al.  Harvey Friedman's Research on the Foundations of Mathematics , 1985 .

[73]  S. G. Simpson,et al.  Issues and problems in reverse mathematics , 2000 .

[74]  Richard A. Shore Reverse mathematics: the playground of logic , 2010, Bull. Symb. Log..

[75]  Kazuyuki Tanaka,et al.  Infinite games in the Cantor space and subsystems of second order arithmetic , 2007, Math. Log. Q..

[76]  Jeffry L. Hirst,et al.  The polarized Ramsey’s theorem , 2009, Arch. Math. Log..

[77]  Harvey M. Friedman,et al.  Logic Colloquium 2006: The inevitability of logical strength: Strict reverse mathematics , 2009 .

[78]  Alberto Marcone,et al.  Lebesgue numbers and Atsuji spaces in subsystems of second-order arithmetic , 1998, Arch. Math. Log..

[79]  Stephen G. Simpson,et al.  Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..

[80]  Thierry Coquand,et al.  Integrals and valuations , 2008, J. Log. Anal..

[81]  Antonio Montalbán,et al.  Equivalence between Fraïssé's conjecture and Jullien's theorem , 2006, Ann. Pure Appl. Log..

[82]  ITAY NEEMAN NECESSARY USE OF Σ1 INDUCTION IN A REVERSAL , 2009 .

[83]  C. Chong,et al.  ON THE ROLE OF THE COLLECTION PRINCIPLE FOR Σ2-FORMULAS IN SECOND-ORDER REVERSE MATHEMATICS , 2009 .