Convergence Analysis of a Penalization Method for the Three-Dimensional Motion of a Rigid Body in an Incompressible Viscous Fluid

We present and analyze a penalization method which extends the the method of [Ph. Angot, C.-H. Bruneau, and P. Fabrie, Numer. Math., 81 (1999), pp. 487-520] to the case of a rigid body moving freely in an incompressible fluid. The fluid-solid system is viewed as a single variable density flow. The interface is captured by a color function satisfying a transport equation. The solid velocity is computed by averaging at every time the flow velocity in the solid phase. This velocity is used to penalize the flow velocity at the fluid-solid interface and to move the interface. Numerical illustrations are provided to illustrate our convergence result. A discussion of our result in the light of existing existence results is also given.

[1]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[2]  Stéphane Vincent,et al.  Eulerian–Lagrangian grid coupling and penalty methods for the simulation of multiphase flows interacting with complex objects , 2008 .

[3]  C. Conca,et al.  Existence of solutions for the equations , 2000 .

[4]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[5]  B. Maury,et al.  A PENALTY METHOD FOR THE SIMULATION OF FLUID - RIGID BODY INTERACTION , 2005 .

[6]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[7]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[8]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[9]  Y. Maday,et al.  Existence de solutions d'un problème de couplage fluide-structure bidimensionnel instationnaire , 1998 .

[10]  B. Maury Regular Article: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains , 1999 .

[11]  N. Patankar A formulation for fast computations of rigid particulate flows , 2001 .

[12]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[13]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[14]  N. Patankar,et al.  A fast computation technique for the direct numerical simulation of rigid particulate flows , 2005 .

[15]  P. Hartman Ordinary Differential Equations , 1965 .

[16]  Hiroshi Fujita,et al.  On existence of periodic weak solutions of the Navier-Stokes equations in regions with periodically moving boundaries , 1972 .

[17]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[18]  Claire Bost Méthodes Level-Set et pénalisation pour le calcul d'interactions fluide-structure. (Level-Set method and penalization for fluid-structure interactions) , 2008 .

[19]  Marius Tucsnak,et al.  Convergence of the Lagrange-Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System , 2005, SIAM J. Numer. Anal..

[20]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[21]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[22]  R. Schwarzenberger ORDINARY DIFFERENTIAL EQUATIONS , 1982 .

[23]  Pierre Fabrie,et al.  Eléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles , 2006 .

[24]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .