Oligomeric Tubulin in Large Transporting Complex Is Transported via Kinesin in Squid Giant Axons

[1]  T. Svitkina,et al.  Speckle microscopic evaluation of microtubule transport in growing nerve processes , 1999, Nature Cell Biology.

[2]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[3]  P. Baas Microtubules and Neuronal Polarity Lessons from Mitosis , 1999, Neuron.

[4]  M. Kinjo Detection of asymmetric PCR products in homogeneous solution by fluorescence correlation spectroscopy. , 1998, BioTechniques.

[5]  M. Kinjo Quantitative analysis by the polymerase chain reaction using fluorescence correlation spectroscopy , 1998 .

[6]  R. Nixon,et al.  The slow axonal transport of cytoskeletal proteins. , 1998, Current opinion in cell biology.

[7]  C. Echeverri,et al.  Cytoplasmic Dynein and Dynactin Are Required for the Transport of Microtubules into the Axon , 1998, The Journal of cell biology.

[8]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[9]  W. Webb,et al.  Fluorescence correlation spectroscopy: diagnostics for sparse molecules. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[10]  N. Hirokawa,et al.  Slow axonal transport: the subunit transport model. , 1997, Trends in cell biology.

[11]  P. Baas,et al.  Slow axonal transport: the polymer transport model. , 1997, Trends in cell biology.

[12]  Guo-Qiang Bi,et al.  Kinesin- and Myosin-driven Steps of Vesicle Recruitment for Ca2+-regulated Exocytosis , 1997, The Journal of cell biology.

[13]  M. Kinjo,et al.  Fluorescence correlation spectroscopy as a detection tool of point mutation in genes , 1997 .

[14]  S. Karki,et al.  Functional Analysis of Dynactin and Cytoplasmic Dynein in Slow Axonal Transport , 1996, The Journal of Neuroscience.

[15]  R. Campenot,et al.  Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures , 1996, The Journal of cell biology.

[16]  N. Hirokawa,et al.  Visualization of Slow Axonal Transport in Vivo , 1996, Science.

[17]  H. Joshi,et al.  Tubulin transport in neurons , 1996, The Journal of cell biology.

[18]  N. Hirokawa,et al.  Active transport of photoactivated tubulin molecules in growing axons revealed by a new electron microscopic analysis , 1996, The Journal of cell biology.

[19]  K. Pfister,et al.  Cytoplasmic dynein is associated with slow axonal transport. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Reese,et al.  Transport of cytoskeletal elements in the squid giant axon. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Kirschner,et al.  Axonal transport of tubulin in tit pioneer neurons in situ , 1995, Neuron.

[22]  N. Hirokawa,et al.  Tubulin dynamics in neuronal axons of living zebrafish embryos , 1995, Neuron.

[23]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  T. Reese,et al.  Evidence for myosin motors on organelles in squid axoplasm. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  N. Hirokawa,et al.  Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon , 1993, The Journal of cell biology.

[26]  T. Reese,et al.  Kinesin is bound with high affinity to squid axon organelles that move to the plus-end of microtubules , 1992, The Journal of cell biology.

[27]  Dieter G. Weiss,et al.  Actin-dependent organelle movement in squid axoplasm , 1992, Nature.

[28]  N. Hirokawa,et al.  Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons , 1992, The Journal of cell biology.

[29]  Ralph A. Nixon,et al.  Slow axonal transport , 1992, Current Biology.

[30]  S S Lim,et al.  A test of microtubule translocation during neurite elongation , 1990, The Journal of cell biology.

[31]  G. Bloom,et al.  A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[32]  N. Hirokawa,et al.  Turnover of fluorescently labelled tubulin and actin in the axon , 1990, Nature.

[33]  G. Borisy,et al.  Progressive and spatially differentiated stability of microtubules in developing neuronal cells , 1989, The Journal of cell biology.

[34]  G. Bloom,et al.  Monoclonal antibodies to kinesin heavy and light chains stain vesicle- like structures, but not microtubules, in cultured cells , 1989, The Journal of cell biology.

[35]  H. Higuchi,et al.  Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. , 1989, Journal of biochemistry.

[36]  G. Bloom,et al.  Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration , 1989, Cell.

[37]  N. Hirokawa,et al.  Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells , 1988, The Journal of cell biology.

[38]  P. Gallant Effects of the external ions and metabolic poisoning on the constriction of the squid giant axon after axotomy , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[40]  R. Sloboda,et al.  Bidirectional transport of fluorescently labeled vesicles introduced into extruded axoplasm of squid Loligo pealei , 1984, The Journal of cell biology.

[41]  R. Lasek,et al.  Axonal transport of the cytoplasmic matrix , 1984, The Journal of cell biology.

[42]  B. Grafstein,et al.  Intracellular transport in neurons. , 1980, Physiological reviews.

[43]  I. Tasaki,et al.  Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo pealei L.) and its possible role in excitability , 1978, The Journal of cell biology.

[44]  Dennis E. Koppel,et al.  Statistical accuracy in fluorescence correlation spectroscopy , 1974 .

[45]  Y. Hiramoto A method of microinjection. , 1974, Experimental cell research.

[46]  Måns Ehrenberg,et al.  Rotational brownian motion and fluorescence intensify fluctuations , 1974 .

[47]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[48]  W. Webb,et al.  Fluorescence correlation spectroscopy. II. An experimental realization , 1974, Biopolymers.

[49]  Y. Hiramoto,et al.  Microinjection of the live spermatozoa into sea urchin eggs. , 1962, Experimental cell research.

[50]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[51]  D. Hackney,et al.  The kinetic cycles of myosin, kinesin, and dynein. , 1996, Annual review of physiology.

[52]  Jerker Widengren,et al.  Interactions and Kinetics of Single Molecules as Observed by Fluorescence Correlation Spectroscopy , 1993 .

[53]  D. Kiehart Chapter 2 Microinjection of Echinoderm Eggs: Apparatus and Procedures , 1982 .